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About Me:

| have enjoyed work and life all over the world, and now
I’'ve joined you in Europe!
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and Stellar Evolution
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Chemical evolution of the Galactic bulge as traced
by microlensed dwarf and subgiant stars
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Young stars In the Galactic bulge?

What does the presence
of young stars imply?

- Results support the idea of a secular (slow) origin for the
Galactic bulge, formed out of the other main Galactic stellar
populations present in the central regions of our Galaxy

Basically, prolonged star formation.
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Young stars In the Galactic bulge?

Why Is this contentious?

- Galactic bulge long been thought to be old

- our understanding of the chemical distribution of the Galaxy Is not
consistent with recent star formation episodes in this region

- old bulge - bulge assembled first;

young or mixed bulge — ?7?

If the latter, there must be less well understood dynamical
mechanisms at play

- we must then answer: how did young stars get there?
- an overabundance of young stars in this region thus calls into

guestion the formation history of the Galaxy and galaxy evolution
mechanisms more generally
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Young stars In the Galactic bulge?

Big picture:

There Is tension in the literature between ages
derived from photometry, which claims a
uniformly old bulge

.I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII :

: ...and ages derived from microlensing
: (spectroscopy), which claims a broad age
: distribution

...but Iin order for something to be true, it must be true
regardless of inference method



A rare and powerful dataset

Microlensing permits the direct inference of physical,

spectroscopic coordinates (Teff, logg) of faint, cool
stars due to the 10-1000x brightness magnification

they experience during these events
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Fig 6, Bensby et al. 2017: 91 stars on Yale isochrones
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For 91 targets of Bensby et al.
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Reproduction with MIST i1sochrones
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MIST)

Count

Resulting age distribution
(Joyce et al

current work: MIST ages For 91 targets of Bensby et al.
M o\ er basis of 0.5-20 Gyr Ages from Teff, logg

- current work: y=10.80; 0=3.46
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Distributions overlaid

Count

current work: MIST ages For 91 targets of Bensby et al.
over basis of 0.5-20 Gyr Ages from Teff, logg

current work: u=10.80; o= 3.46
Ages from Bensby et al.
Bensby etal. u=8.17; 0= 3.94
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One could reasonably ask...

Is it because the MIST and Yale models use wildly
different physics and therefore yield different ages?



Yale vs MIST
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Is It because we consider alpha-element enhancement as
a function of metallicity (Christian I. Johnson+, 2022) in
the isochrones and the other age determinations do not?



Effects of alpha-element enhancement
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One could reasonably ask...

Is it because the MIST and Yale models use wildly
different physics and therefore yield different ages?

NO

Is It because we consider alpha-element enhancement as
a function of metallicity (Christian I. Johnson et al. 2022)
In the iIsochrones and the other age determinations do

not?

Also no

*see full paper (arXiv: 2205.07964) for rigorous
demonstration of this using actual math & histograms



Punchline: we (Joyce + MIST) do not find an abundance of
young stars at high metallicities
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Punchline: we (Joyce + MIST) do not find an abundance of
young stars at high metallicities
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Punchline: we (Joyce + MIST) do not find an abundance of
young stars at high metallicities...nor do we find young or
Intermediate-age stars at metallicities below ~solar [Fe/H]
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Punchline: we (Joyce + MIST) do not find an abundance of
young stars at high metallicities...nor do we find young or
Intermediate-age stars at metallicities below ~solar [Fe/H]

o MIST ages
. a-enhanced
logg, Teff

144

12

(Gyr)
@
S

U 104

Ag

. _[FeIH] binned in 0.2 dex_

_2|-0I T T I_]l--5l T T I_]l--UI T T I_a-SI T T T 0'[} T T T T 05 T
[Fe/H] (bin median)



Why should you believe Joyce+MIST
over the previous result?



Why should you believe Joyce+MIST
over the previous result?

Carefully considered
hybrid statistical techniques



Age determination algorithm

Challenges:

Though it is straightforward to fit an isochrone to an
observation “by eye,” it is much more difficult to con-
struct a mathematically rigorous definition of a best-
fitting model. This is especially true in a situation
where:

1. many observations are plausibly consistent with a
large number of isochrones (i.e., the isochrone falls
within the star’s 1o uncertainties);

2. the isochrones are discretely spaced in age and
metallicity and thus limited in resolution; and

3. the models contain their own intrinsic uncertain-
ties that are both difficult to quantify and highly
variant over different parameter regimes—a point
to which we will return in later discussion.
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(1) For a given star, compute the (3 DoF)
chisqg score for the fit of that star’s
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(2) Each chisqg score corresponds to a
relative likelinood, p», given by the
density function of the chi square
distribution with 3 DoF at that score.



For the nerds:

To compute the weighted-average age of a given star, we apply a combination of a
frequentist approach, goodness-of-fit, and maximum likelihood analysis

(1) For a given star, compute the (3 DoF)
chisqg score for the fit of that star’s

2 : .
2 - Z (Oi — ti) observational parameters to every point
Xfor i DoF —

02 along a candidate model (e.g. isochrone)
2 /)

2 (log go — log gt)2 I (Teff,o - Teff,t)2 (Zo - Zt)2

XB17 — 5 5 T 5 :
O-log‘ q,o O-Teff',o O-Z,o
(3) - Compute a weighted average over (2) Each chisq score corresponds to a
all candidate hypotheses (each relative likelinood, p», given by the
point on each isochrone) density function of the chi square
- A point with age t, is weighted by distribution with 3 DoF at that score.

its likelihood, p,, of being an

appropriate fit to the star

- The final weighted average, ts, is Z e

our estimate for the age of the star g = = :
Zn Pn




Error bars: Monte Carlo resampling

Simulated distribution

- 100 MC simulations in Teff, IDggl
1 MIST ages over 0.5-20 Gyr for MOA-2013-BLG-4025
MIST age: 10.62 Gyr
N B17 age: 5.30 Gyr
20 L=10.66; o= 1.B3 (simulated)

Construct three independent
normal distributions with densities
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Error bars: Monte Carlo resampling

— Simulated distribution 100 MC simulations in Teff, logg
1 MIST ages over 0.5-20 Gyr for MOA-2013-BLG-4025

MIST age: 10.62 Gyr
B17 age: 5.30 Gyr

50— #m1086i0-183 (simuiste) Construct three independent
normal distributions with densities

1 2 1
- —(e—p)?/20
xr) — ——¢€

defined by
4
=
= H = TefE,S? O = OTe 55
O = 1 .
n =108 gs, O = Ologgs>
M = ZS: 0 =0z7¢4

- the fact that our MC
simulations build a distribution
approaching a normal
distribution as number of trials
increases suggests that the
assumption of normally
distributed variables is
reasonable

8
Ages (Gyr)
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There are many physical choices In stellar
models one should worry about...

Convective & energy transport parameters:
- mixing efficiency - convective mixing length
- convective overshoot
- convective boundaries; how the Schwarzschild/Ledoux criterion is evaluated

Heavy element diffusion:
- Is it included, and where?
- how is it implemented?
- gravitational settling?
- are all isotopes treated the same?

Atmospheric boundary conditions:
- Is it a T-tau relation, & what kind of integration? Eddington vs Krishna-Swamy
- if instead using a table-based treatment from external simulations (e.g.
PHOENIX, Kurucz), what solar scale and other physics were used in those
simulations? Are they self-consistent with the assumptions in the stellar models?
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Point of demonstration: the convective
mixing length, awcr

Why this parameter?

- even modest changes to Omt dramatically affect the
morphology of isochrones between the MSTO and tip of
the red giant branch



Look at those RGBS!
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Point of demonstration: the convective
mixing length, awcr

Why this parameter?

- even modest changes to Omt dramatically affect the
morphology of isochrones between the MSTO and tip of
the red giant branch

- previous work has shown that even stars very similar to
the Sun are better fit by mixing length values 10-20%
different than the solar-calibrated value
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Point of demonstration: the convective
mixing length, awcr

Why this parameter?

- even modest changes to Omt dramatically affect the
morphology of isochrones between the MSTO and tip of
the red giant branch

- previous work has shown that even stars very similar to
the Sun are better fit by mixing length values 10-20%
different than the solar-calibrated value

- because it's my favorite parameter/because | can






Point of demonstration: the convective

mixing length, awr

anyone does!

While far from the only source of mode
varying awcr provides a sharp demonstration of the
danger of failing to account for theoretical
uncertainties in age determinations—and hardly

Wi

\

INg uncertainty,




The convective mixing length: The most important
neglected parameter in stellar modeling!

A dinT
= W= dInP

- “mixing length:” average vertical distance
over which parcels in pressure, but not
thermal, equilibrium can travel before
denaturing

-a _ represents mean free path measured
In pressure scale heights, H_= d In(P)/dIn(T)

- a measure of “efficiency” of convection




Effect of alpha MLT on a stellar track
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(1) Stellar track

Asymplofic Giant Branch Red Giant Branch
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Figure 1: a set of isochrones, each having the same assumption for metallicity but computed
with different mixing length values, as indicated on the legend.
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The impact of aMLT
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How do we Incorporate the isochrones’ “shift” in our
error simulations?

Figure 11. In a new set of Monte Carlo simulations, we
adopt the same definitions for x? and tg given in Equa-
tions 2 and 3 and sample from the same distributions
in observational parameters given in Equation 4, but we
introduce an additional term accounting for variation
in the isochrones. In each Monte Carlo simulation, we
sample normal distributions given by

p=0, o= OTett,th (53)

p=20, 0= 0lggu; (5b)

uniformly shifting the entire basis of isochrones horizon-
tally by a random sample of Equation 5a and ver-
tically by a random sample from Equation 5b.



The rest of the algorithm proceeds as normal. The val-
ues adopted for the order—of-magnitude theoretical un-
certainties in each direction are ot = 200 K and
Tlog g, = U.17 dex, representing approximately one third

of the spans® shown in the HR diagrams of Figure 11.
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What happens when we incorporate variation in the
Isochrones’ position in logg-Teff in the MC simulations?

Name .. a-enhanced ...model err
1 MOA-2009-BLG-174S 93120 9.3+4.0
2  MOA-2009-BLG-2595 -3124 7.8+ 3.8
3 MOA-2010-BLG-167S % ¥ha4 417 154+ 3.8
4  MOA-2010-BLG-3115 i i it 4 T iEa3
5 MOA-2010-BLG-446S 49+1.2 494+2.0
6 MOA-2010-BLG-523S % il b T 7.0+ 3.8
7  OGLE-2011-BLG-0950S % § gz 1.1 S.a 2 1.0
&  OGLE-2011-BLG-0969S % 134411 13.4+15
9  MOA-2011-BLG-0345 146 +1.9 14.6 + 2.8
10 MOA-2011-BLG-058S 13.8+19 13.8 2.8
11 OGLE-2011-BLG-10725 22423 82434
12 MOA-2011-BLG-090S 174+1.1 174427
13 MOA-2011-BLG-104S 1334 12 13.31+138
14 OGLE-2011-BLG-11055 99+19 99+29
15 MOA-2011-BLG-174S 5.01+1.0 a0 =05
16 MOA-2011-BLG-191S 17 T 2B 8.1+4.1
17 MOA-2011-BLG-234S t 8.3+1.8 8.3+3.0
18 MOA-2011-BLG-278S 127 1.5 127+ 1.8
19 OGLE-2011-BLG-14108 10,8 1.6 10.8 124
20 MOA-2011-BLG-4455 11.1+18 11.14+28
21 MOA-2012-BLG-0225 50313 a0 2.2
22 OGLE-2012-BLG-00265 [ B 111425




What happens when we incorporate variation in the
Isochrones’ position in logg-Teff in the MC simulations?

Name .. a-enhanced
1 MOA-2009-BLG-174S 9.3
2  MOA-2009-BLG-2595 7.8
3 MOA-2010-BLG-167S % 15.4§
4  MOA-2010-BLG-3115 T-T
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11 OGLE-2011-BLG-10725 8.2
12 MOA-2011-BLG-090S 174§
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14 OGLE-2011-BLG-11055 9.9
15 MOA-2011-BLG-174S 5.0
16 MOA-2011-BLG-191S 8.1
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19 OGLE-2011-BLG-14108 10.8 §
20 MOA-2011-BLG-4455 11.1§
21 MOA-2012-BLG-0225 5.0
22 OGLE-2012-BLG-00265 11.1§




What happens when we incorporate variation in the
Isochrones’ position in logg-Teff in the MC simulations?
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Name .. a-enhanced ...model err
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Tension between
Inference methods?



Attempt
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to fit BDBS photometry
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Insufficient data resolution?

REALISTIC AGES IN THE BULGE 27
i S -1 current work: MIST ages For 18 BDES gold samplex_ E17 targets
current work: MIST ages For 51 BOBS x B17 targets| o - . X | BDBS ages from g, photometry
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Figure 14. Age histograms in the style of Figures 5 and 7 but with ages derived from BDBS photometry. LEFT: The full
intersection of the B17 and BDBS target lists for which complete photometric and distance information was available, totalling
51. The age distribution according to Bensby et al. (2017) for the same subset of stars is overlaid in pink. RIGHT: Same as
left panel, but for the gold sample containing 18 members. The ages for the same 18 stars according to B17 is overlaid in pink.



Spectroscopic vs (poor) photometric
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Attempt to

fit Gala photometry
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Clear case of insufficient data resolution

JOYCE ET AL.

3
30
b current work: MIST ages
64 aver basis of 0.5-20 Gyr
- current work: = 9.16; o= 1.09
E Ages from Banshy et al.
- Bensby et al. p=8.76; o=3.84
5_
4
.
o
g d
03]
2
T -
- f,’
1_ ’f’
fl -
4 S
0 | I D B BN R e
i 6
Figure

LEFT: Same as Figure 14

Ages (Gyr)

»
[
[
[
[
[
[
[
"
[}
"
"
[
"
[
)
"
[
-
[
"
[
!
"
[
"
»
!
»

For 16 Gaia x B17 largets
Lt IV R TRbNn T ] current work: MIST ages
3.0 ™™ 5uer basis of 0.5-20 Gyr
q - current work: y = 8.87; g=1.30
1 Ages from Bensby et al.
o == = Bensby etal. u=9.38; =464
2.5 p
2.0
= .
=
8 =
U]..St
1.0+
H."-\. 4 %
- 0.5 ‘_.-"""
S~ -
~ E -
~ -
"'I.~ . ’.a
UL I B N S 0.0t
12 14 2 4 6

8
Ages (Gyr)

(For & Gaia gokd sample x B1T targets,
| Gala ages fram g,/ phatometny

, but for the intersection of the B17 and Gaia target lists examining only those stars
selected according to the description in Section A.2. This is the “Gaia gold sample.” RIGHT: Same as left panel, but for the
entire intersection of the B17 and Gaia target lists. This totals 16 stars after the removal of Gaia stars with either (1) bad
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Conclusions

Bensby+ 2017 (Yale isochrones) find a large population of metal-rich, young stars in the
bulge, suggesting prolonged star formation in the region, which is in conflict with
previous/other understanding of the formation history of the Galaxy

Joyce (me)+ 2022 (MIST isochrones) do not find a large constituency of metal-rich young
stars in this region, despite using Bensby+2017’s parameters verbatim

There is no significant discrepancy between the physical assumptions adopted between
both isochrone databases, nor can differences in alpha-abundance scale explain the
striking difference in derived age distributions

Bensby+2017’s age distribution is statistically consistent with a uniform distribution across
1 to 15 Gyr, whereas Joyce+2022 finds a clear peak at 13 Gyr and a median of 10.8 Gyr.

While still showing some slight age spread, Joyce+2022 results are more consistent with
photometric analyses of this region despite being based on the same spectroscopic,
microlensed sample analyzed in Bensby+2017

Have we resolved the spectroscopic/photometric tension? Not entirely, but careful
application of statistics puts the picture in better focus

Ages are hard! Be careful with math.



BONUS: Betelgeuse MLT content



Late 2019: unprecedented brightness drop

Jan 2019 Dec 2019

y ¥ , 0.3
S Y A R

H0.9
{12 §
115 =

ghtness

b

2018 2019 2020 2021
Year

Press release: Kavli IPMU Toyko, Japan



Our Approach (one of many):

Reproduce this lightcurve via simulation
to understand why Betelgeuse became
dim or rule out causes



Our Approach (one of many):

Reproduce this lightcurve via simulation
to understand why Betelgeuse became
dim or rule out causes

...but in order to understand why this
dimming event was “unprecedented,” we
must first understand Betelgeuse’s
normal periodic variations



The ‘unprecedented’ dimming of Betelgeuse
-First question: How unprecedented, really?
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What patterns do we detect in i - g
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Observations state 3600 +/- 25 K, yet we can move an
evolutionary track by ~350 K just by changing the
convective mixing length from 1.8x to 2.5x the pressure
scale height
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Observations state 3600 +/- 25 K, yet we can move an
evolutionary track by ~350 K just by changing the
convective mixing length from 1.8x to 2.5x the pressure

scale height _ eed to introduce new interpretation of

temperature constraints that account for ad hoc
modeling choices: region in blue
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Add

In asteroseismology
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Use GYRE to perform linear seismic analysis on observationally consistent
tracks (those which intersect the uncertainty-adjusted Teff constraints)




Determining which models are seismically compatible
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This method constrains Betelgeuse’s physical radius
...even more tightly than the traditional
Interferometry + parallax method
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Graph 2: Fundamental mode; fixed mixing length




Classical & Seismic results:

General finding: on the (initial) mass of Betelgeuse,
our results are consistent with other modeling efforts; not
particularly more precise: 18-24 Msolar

...but our models permit only a very small range for the physical
radius: a 3o band of 150 Rsolar

In fact, this range is considerably smaller than predictions for the
physical radius provided by traditional observational methods
(interferometry + parallax)!

Unanticipated Bonus:
precision modelled radius + measured angular diameter
= new parallax distance estimate

Seismic parallax!!
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Ultra bonus content: you can do
statistics for sociology of science, too

Gender Disparity in Publishing Six Months after the KITP Workshop Probes of Transport in Stars

MERIDITH JOYCE®, 2 JAMIE Tayar @ 32 aND DaNIEL LEcOANET @* 32

1 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
2 Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA*
3 Department of Astronomy, University of Florida, Bryant Space Science Center, Stadium Read, Gainesville, FI 32611, USA
4 Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston IL 60208, USA
SCIERA, Northwestern University, Evanston IL 60201, USA

ABSTRACT

Conferences and workshops shape scientific discourse. The Kavli Institute for Theoretical Physics
(KITP) hosts long-term workshops to stimulate scientific collaboration that would not otherwise have
taken place. One goal of KITP programs is to increase diversity in the next generation of scientists.

arXiv: 2206.10617 (also published in PASP)




Ultra bonus content: you can do
statistics for sociology of science, too
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arXiv: 2206.10617 (also published in PASP)



arXiv: 2206.10617 (also published in PASP)
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The number of observed all-female* papers is about the same as
predicted by our (most generous) model, whereas the number of
observed all-male* papers is highly outlying (p<0.05)

(see paper for detailed discussion of assumptions)
*genders as reported by participants; “non-binary” and “another not included” options were available







Bulge Age Conclusions: reprise

Bensby+ 2017 (Yale isochrones) find a large population of metal-rich, young stars in the
bulge, suggesting prolonged star formation in the region, which is in conflict with
previous/other understanding of the formation history of the Galaxy

Joyce (me)+ 2022 (MIST isochrones) do not find a large constituency of metal-rich young
stars in this region, despite using Bensby+2017’s parameters verbatim

There is no significant discrepancy between the physical assumptions adopted between
both isochrone databases, nor can differences in alpha-abundance scale explain the
striking difference in derived age distributions

Bensby+2017’s age distribution is statistically consistent with a uniform distribution across
1 to 15 Gyr, whereas Joyce+2022 finds a clear peak at 13 Gyr and a median of 10.8 Gyr.

While still showing some slight age spread, Joyce+2022 results are more consistent with
photometric analyses of this region despite being based on the same spectroscopic,
microlensed sample analyzed in Bensby+2017

Have we resolved the spectroscopic/photometric tension? Not entirely, but careful
application of statistics puts the picture in better focus

Ages are hard! Be careful with math.
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