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Life cycle of matter
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Circumstellar chemistry

Li et al. (2016) A&A 588, A4

Oxygen-rich

Li et al. (2014) A&A 568, A111

Carbon-rich

CO, SiO, H2O, OH, etc. CO, HCN, CN, C2H2, etc.



Wind acceleration
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Pulsation-induced shocks

dust

Höfner (2016)



Wind acceleration
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Decin et al. (2010)

IK Tau

! " = !$ + (!' − !$) 1 − "$"
+

β-type velocity profile

Terminal velocity
v∞(CO)



Mass-loss rate and expansion velocity
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• SiO !=1 J= 2–1 maser observations with the 
IRAM 30-m telescope

• v∞(SiO) > v∞(CO)
• SiO wing emission likely from the inner radii

High-velocity SiO maser wings
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• SiO !=1 J= 2–1 maser observations with the 
IRAM 30-m telescope

• v∞(SiO) > v∞(CO)
• SiO wing emission likely from the inner radii

High-velocity SiO maser wings
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Mass conservation

• H2 gas densities derived from CO line observations
• may be underestimated#̇



Interferometric observations
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NOEMA

ALMA

© L. Young

© IRAM, J. Boissier



• 70.4–119.3 GHz / 127.0–182.9 GHz / 196.1–276.0 GHz
• Instantaneous bandwidth of ~31 GHz (7.744 GHz/sideband/pol.)
• New 250 kHz correlator mode
• New extended A configuration: baselines up to 1700 m

Ø 12 antennas
Ø 0.7 arcsec at 100 GHz / 0.3 arcsec at 230 GHz

NOEMA capabilities
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Larger line widths in new observations
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Winters et al. (2022) Decin et al. (2018)

RS Cnc (NOEMA) IK Tau (ALMA)

Old terminal velocity ~17.7 km/s



Larger line widths in new observations
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Ramstedt et al. (2020): Compact Array
Gottlieb et al. (2022): 12-m main array

T Mic (ALMA)
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Young (1995); Nhung et al. (2022)
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ATOMIUM sample
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Gottlieb et al.
(2022)

• Higher v∞(CO) with sensitive ALMA observations
• Higher v∞ from other spectral lines (esp. SiO)



• Thermal & turbulent line broadening (~1–2 km/s)
• Insufficient to explain the broad line wings

• Pulsations
• Redshifted (infalling) gas may appear in front of the stellar 

surface 
↓  An example model from Höfner et al. (2016)

High-velocity line wings
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Stellar radius (R*)



• Observationally confirmed with observations using the longest 
ALMA baselines (~16 km)

Pulsations
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Adapted from Evans, N. J. II (1999)

saturated 
absorption

Wong et al. (2016)

o Cet



• Observationally confirmed with observations using the longest 
ALMA baselines (~16 km)

Pulsations
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saturated 
absorption

Wong et al. (2016)

o Cet

Continuum

Velocity profile in 
radiative transfer model



• Decin et al. (2018) estimated that the velocity variation due to 
pulsations was negligible due to relatively low energy levels of 
detected (sub)millimetre spectral lines.

Pulsations
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Nowotny et al. (2010)



Pulsations
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Nowotny et al. (2010)
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• Gottlieb et al. (2022) found that 
pulsation-driven shocks cannot explain 
the observed velocity measures in 
their radiative transfer models.

Pulsations
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Velocity profile adapted from Bladh et al. (2019)



• Decin et al. (2020) argued that interaction with (sub)stellar 
companion can be the dominant wind-shaping mechanism for 
most observed AGB stars.

Binary interactions
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• Gottlieb et al. (2022) suggest that binary interaction may also 
produce non-monotonic velocity structures.

↓  3D hydrodynamical simulation by El Mellah et al. (2020)

Binary interactions
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• Gottlieb et al. (2022) suggest that binary interaction may also 
produce non-monotonic velocity structures.
Ø Preferential direction of outflows
Ø Equatorial density enhancement (EDE) may occur with a 

density contrast of up to an order of magnitude
Ø Dust mass-loss rates based on spherical symmetry may be 

systematically overestimated

Binary interactions
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• Significant non-zero offsets of high-velocity SiO emission in 
position-velocity (PV) diagrams (Homan et al. 2021)
Ø High-v components do not come from the atmosphere
Ø Possibly a differentially rotating disc

The case of R Hya
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Homan et al. (2021)

CO SiO SiO



• Shocks induced by pulsations and convective cell ejections are 
suggested by Nhung et al. instead.

The case of R Hya
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Homan et al. (2021)
Continuum-subtracted

Nhung et al. (arXiv:2207.06690)
Without continuum subtraction
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Summary

• High-velocity wings exceeding the terminal velocity derived from 

CO line profiles are seen in multiple O-rich AGB stars.

• High-angular-resolution and sensitive ALMA observations reveal 

broad and low-level CO emission line wings.

• Various molecular transitions trace high-velocity features (e.g. 

SiO, H2O, SiS, HCN).

• Possible causes include pulsation-induced shocks, binary 

interaction of a close companion, rotation.

• Detailed analyses and radiative transfer modelling of individual 

objects will be necessary.


