# (Sub)millimetre observations of the inner wind regions of asymptotic giant branch stars

Ka Tat Wong

Uppsala University 8 September 2022

Image: © IRAM, F. Xavier Cuvelier

### Life cycle of matter

Collapse

Fresh gas from intergalactic space

Interstellar cloud of gas and dust

> When larger stars die, they release material back into interstellar space

Credit: M. Godwin Goldsmith, D. (2012) *Scientific American* 306, 32 circumstellar disk

 Future: Star formation tapers off as interstellar gas becomes scarce. Stellar raw material becomes enriched in heavy elements.

Future: Eventually the heavy-element enrichment shortens stellar life spans by reducing the hydrogen supply.

Stellar embryo

elements makes stellar gas more opaque, causing stars to be dimmer and longer-lived. More planets form, too.

Future: The bounty of heavy

Protostar with

Future: As red dwarfs use up their fuel and die, they leave behind a new class of helium-rich white dwarf star. Star surrounded by planetary system

> Star bloats to red giant; inner planets are swallowed up, some escape, outer ones survive

Planet 🚳 wanders

# Circumstellar envelope (CSE)



#### Circumstellar chemistry



#### Wind acceleration



#### Wind acceleration



#### Mass-loss rate and expansion velocity



# High-velocity SiO maser wings

- SiO v=1 J= 2–1 maser observations with the IRAM 30-m telescope
- $v_{\infty}(SiO) > v_{\infty}(CO)$
- SiO wing emission likely from the inner radii



R Leo

50

0

# High-velocity SiO maser wings

- SiO v=1 J= 2–1 maser observations with the IRAM 30-m telescope
- $V_{\infty}(SiO) > V_{\infty}(CO)$
- SiO wing emission likely from the inner radii

Mass conservation  $\dot{M}(r) = 4\pi r^2 \rho(r)v(r)$ 

- H<sub>2</sub> gas densities derived from CO line observations
- $\dot{M}$  may be underestimated

#### Interferometric observations



© IRAM, J. Boissier



© L. Young

# **NOEMA** capabilities

- 70.4–119.3 GHz / 127.0–182.9 GHz / 196.1–276.0 GHz
- Instantaneous bandwidth of ~31 GHz (7.744 GHz/sideband/pol.)
- New 250 kHz correlator mode
- New extended A configuration: baselines up to 1700 m
  - 12 antennas
  - > 0.7 arcsec at 100 GHz / 0.3 arcsec at 230 GHz



# Larger line widths in new observations

#### RS Cnc (NOEMA)

IK Tau (ALMA)



# Larger line widths in new observations



Young (1995); Nhung et al. (2022)

# ATOMIUM sample

- Higher  $v_{\infty}(CO)$  with sensitive ALMA observations
- Higher  $v_{\infty}$  from other spectral lines (esp. SiO)

 Table 3. Velocity parameters of the ATOMIUM sample.

| (1)<br>Target             | (2)<br>$v_{\infty}^{\text{old}}(\text{CO})$<br>$(\text{km s}^{-1})$ | (3)<br>$v_{\infty}^{\text{com}}(\text{CO})$<br>(km s <sup>-1</sup> ) | (4)<br>v(CO)<br>$(km s^{-1})$ | (5)<br>$v_{max}^{(a)}$<br>(km s <sup>-1</sup> ) | (6)<br>Transition <sup>(b)</sup><br>$(v_{max})$        |   |
|---------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------|-------------------------------------------------|--------------------------------------------------------|---|
| S Pav                     | 9.0(1)                                                              | 13.0                                                                 | 15.5                          | 21.2                                            | SiO $J = 5 - 4$                                        |   |
| T Mic                     | 6.1 (2)                                                             | 12.7                                                                 | 16.0                          | 21.8                                            | SiO $J = 5 - 4$                                        |   |
| U Del <sup>(c)</sup>      | 7.5 (1)                                                             | 14.6                                                                 | 18.4                          | 19.4                                            | SiO $J = 6 - 5$                                        |   |
| RW Sco                    | 11.0 (3)                                                            | 18.5                                                                 | 18.5                          | 18.8                                            | SO <sub>2</sub> 11 <sub>1,11</sub> -10 <sub>0,10</sub> |   |
| V PsA <sup>(c)</sup>      | 14.4 (1)                                                            | 18.8                                                                 | 23.1                          | 28.4                                            | SiO $J = 6 - 5$                                        |   |
| SV Aqr <sup>(c)</sup>     | 7.9 (4)                                                             | 15.9                                                                 | 17.0                          | 23.8                                            | SiO $J = 6 - 5$                                        |   |
| R Hya                     | 12.5 (5)                                                            | 22.2                                                                 | 22.2                          | 24.8                                            | SiO $J = 6 - 5$                                        |   |
| U Her                     | 11.5 (6)                                                            | 19.7                                                                 | 19.7                          | 23.0                                            | SiO $v = 1 J = 5 - 4$                                  |   |
| $\pi^1$ Gru               | 30.0 (7)                                                            | 64.5                                                                 | 64.5                          | 64.5                                            | CO $J = 2 - 1$                                         |   |
| AH Sco $^{(d)}$           | 23.0 (8)                                                            | _                                                                    | 35.4                          | 52.0                                            | HCN J = 3 - 2                                          |   |
| R Aql                     | 9.5 (6)                                                             | 12.8                                                                 | 15.8                          | 21.4                                            | SiO $J = 5 - 4$                                        |   |
| W Aql                     | 20.0 (5)                                                            | 24.6                                                                 | 27.1                          | 42.5                                            | SiO $J = 6 - 5$                                        |   |
| GY Aql                    | 16.2 (9)                                                            | 15.0                                                                 | 18.1                          | 22.9                                            | SiO $J = 5 - 4$                                        |   |
| IRC -10529                | 16.5 (5)                                                            | 21.8                                                                 | 21.8                          | 26.9                                            | SiS $J = 12 - 11$                                      |   |
| KW Sgr <sup>(c),(d)</sup> | 27.0 (10)                                                           | _                                                                    | 27.7                          | 34.0                                            | SiO $J = 5 - 4$                                        | C |
| IRC +10011                | 19.8 (5)                                                            | 23.1                                                                 | 23.1                          | 34.9                                            | $Si^{34}S J = 14 - 13$                                 | G |
| VX Sgr                    | 24.3 (5)                                                            | 32.9                                                                 | 34.4                          | 66.5                                            | HCN $J = 3 - 2$                                        |   |

# High-velocity line wings

- Thermal & turbulent line broadening (~1–2 km/s)
  - Insufficient to explain the broad line wings
- Pulsations
  - Redshifted (infalling) gas may appear in front of the stellar surface

↓ An example model from Höfner et al. (2016)



 Observationally confirmed with observations using the longest ALMA baselines (~16 km)



 Observationally confirmed with observations using the longest ALMA baselines (~16 km)



 Decin et al. (2018) estimated that the velocity variation due to pulsations was negligible due to relatively low energy levels of detected (sub)millimetre spectral lines.



|                             | Specific line chosen for modelling |                            |                    |  |  |
|-----------------------------|------------------------------------|----------------------------|--------------------|--|--|
| Line type                   | designation                        | $\sigma/wn~[{ m cm}^{-1}]$ | $\lambda  [\mu m]$ |  |  |
| $CN \Delta v = -2 red$      | 1–3 Q <sub>2</sub> 4.5             | 4871.3400                  | 2.0528             |  |  |
| $CO \Delta v = 3$           | 5–2 P30                            | 6033.8967                  | 1.6573             |  |  |
| $CO \Delta v = 2 high-exc.$ | 2–0 R82                            | 4321.2240                  | 2.3142             |  |  |
| $CO \Delta v = 2$ low-exc.  | 2–0 R19                            | 4322.0657                  | 2.3137             |  |  |
| $CO \Delta v = 1$           | 1–0 R1                             | 2150.8560                  | 4.6493             |  |  |

Nowotny et al. (2010)



 Gottlieb et al. (2022) found that pulsation-driven shocks cannot explain the observed velocity measures in their radiative transfer models.

Velocity profile adapted from Bladh et al. (2019)





# **Binary interactions**

• Decin et al. (2020) argued that interaction with (sub)stellar companion can be the dominant wind-shaping mechanism for most observed AGB stars.



# **Binary interactions**

- Gottlieb et al. (2022) suggest that binary interaction may also produce non-monotonic velocity structures.
  - ↓ 3D hydrodynamical simulation by El Mellah et al. (2020)



# **Binary interactions**

- Gottlieb et al. (2022) suggest that binary interaction may also produce non-monotonic velocity structures.
  - Preferential direction of outflows
  - Equatorial density enhancement (EDE) may occur with a density contrast of up to an order of magnitude
  - Dust mass-loss rates based on spherical symmetry may be systematically overestimated

# The case of R Hya

- Significant non-zero offsets of high-velocity SiO emission in position-velocity (PV) diagrams (Homan et al. 2021)
  - High-v components do not come from the atmosphere
  - Possibly a differentially rotating disc



Homan et al. (2021)

# The case of R Hya

• Shocks induced by pulsations and convective cell ejections are suggested by Nhung et al. instead.



# Summary

- High-velocity wings exceeding the terminal velocity derived from CO line profiles are seen in multiple O-rich AGB stars.
- High-angular-resolution and sensitive ALMA observations reveal broad and low-level CO emission line wings.
- Various molecular transitions trace high-velocity features (e.g. SiO, H<sub>2</sub>O, SiS, HCN).
- Possible causes include pulsation-induced shocks, binary interaction of a close companion, rotation.
- Detailed analyses and radiative transfer modelling of individual objects will be necessary.