Motor intervention at ESS

4th and 5th July

Timeline summary

- Monday morning : Open the cryomodule
 - Opening cryomodule (only the Cavity Out side), visual inspection, replacement of the motor (CTS2) Crane needed
- Monday afternoon: Motor and Gages activities
 - Cabling and setting up the hardware and software, blocking disengage system, then try a
 frequency sensitivity measurement (max detuning allowed is 13 kHz to remain below 40 MPa
 on mechanical stress of the cavity) VNA and Coupleur RF connection needed here
- Tuesday morning: Close the cryomodule
 - Final inspection, double check the disengage system is free (blocker should have been removed), proceed to alignment and close the cryomodule Crane + Laser Tracker needed
- Tuesday afternoon :
 - Extra time / Departure

Electrical connection

	паріа в 22 із т 2 і20. мяюсе, чітріаче соррег	8	V-		
SOCKET EQUIPED WITH A CABLES AND A PLUGS					
(m)	Cable reference, gauge and material	N' Pin	Signal	Socket type	Name
	Habia B 2619 T 2×2 /09-89: AWG26, tin plated copper	1 2 3 4	C B A		
	Habia B 2807 T 2 /90: A₩G28, tin plated copper	5 6	Dry (N.C.) Dry (N.C.)	LEMO-HGC.3B.312.C.L.L.PV.E	CMXX-LC03
	Habia B 2619 T 2x2 /09-89: AWG26, tin plated copper	7 8 9	C B A	- CTS2	Feedthrough connector on
	Habia B 2807 T 2 /90: AWG28, tin plated copper	11 12	Dry (N.C.) Dry (N.C.)		Cryomodule
SOCKET EQUIPED WITH A CABLES AND A PLUGS					
m)	Cable reference, gauge and material	N' Pin	Signal	Socket type	Name
	U. I. D.0007 T.0.100 U.1000	1	V-		

Resistance measurement:

- Beetween phase A and B : 2.7 ohm → OK
- Beetween phase C and D : 2.7 ohm → OK
- Beetween limit switch signals : 2.3 ohm → OK (normally closed)

Motor intervention

- Visual inspection
 - Take pictures, measure the distance/position of the actuator
- Connecting to motor
 - Use dummy motor for software/hardware check up, very usefull
 - Double check parameters, speed, etc.
- Try some runs with the suspicious motor
 - Backwards 10 turns, 2 turns at the time
 OK
 - Forward 10 turns, 2 turns at the time → OK
 - Homing procedure → OK

Memo:

1 motor turn is equivalent to:

- 200 motor steps (full step)
- 1600 motor steps (1/8 steps)
- 12800 motor steps (1/64 steps)

1 screw turn is equivalent to:

- 51200 motor steps (full step)
- 409600 motor steps (1/8 steps)
- 3276800 motor steps (1/64 steps)

Everything is fine!

Thanks everyone....

...the adventure seems not finished!

Motor replacement

→ OK

Note that we now put the copper collar of the PT100 sensor on the gearhead body, just by precaution.

- → Will have slight incidence on temperature response
- → True on CM12, and CM10 CTS2 then.

VNA Measurement

Frequency measurement at warm

Those measurement can be done thx a blocker part on the disengage system, and we must not exceed 13 kHz relative frequency to stay in elastic limit of Niobium (40 MPa)

1/ Frequency measurement with Phytron MCC2 → OK

2/ Frequency measurement with Beckhoff EL7041 → OK

Nice reproducibility from measurement made at IJCLab before sending de cryomodule.

Conclusion

- Initial Motor #170944229 of CTS2 from CM10 didn't show any sign of failure.
- This motor will be send back at IJCLab and tested again in LN2 cryostat. Probably on September/October.
- Phytron meeting is foreseen for August/September in order to report them this strange failure and discuss about risk and consequences for the rest of the motors qualified.
- This motor have been replaced by #170944234 motor.
- Warm temperature test with this motor driven successively by Phytron and Beckhoff motor driver gave satisfying results: no vibration, no loss of steps.

Thanks for many help from everyone on site.