Present challenges for future

accelerator magnets

UNIVERSITÉ **DE GENÈVE**

FACULTÉ DES SCIENCES

T. Bagni

ESRF

The European Synchrotron

Department of Quantum Matter Physics, University of Geneva, Switzerland Department of Physics and Astronomy, Uppsala University, Sweden

2022 Oct 27

People involved

Prof. C. Senatore Dr. F. Buta

Dr. D. Mauro

CERN

Dr. A. Rack

Dr. M. Majkut

Dr. J. Ferradas- Dr. C. Barth Troitino

Outline:

- *Why superconductors?*
	- *The Large Hadron Collider*
	- *Niobium-titanium (Nb-Ti)*
- *Why Nb-Ti is not enough?*
	- *High Luminosity LHC (HL-LHC) and Future Circular Collider (FCC)*
	- *Niobium-tin (Nb₃Sn)*
- *Challenges of Nb³ Sn magnets*
- *Path toward solutions*

Why Superconductors?

Superconductors are better than normal materials

In a perfect superconductor: R = 0 Ω

No power consumption except for refrigeration → lower power costs

High current density

- *→ compact windings / less volume*
- *→ high magnetic fields*
- *→ high energy*
- *→ high gradient*
- *→ high luminosity*

But superconductors suffer losses when the magnetic field change

Magnetic field (tesla) *Wilson, M. N. Superconducting Magnets. (Clarendon Press, 1983)*

27 km, 8.33 T 14 TeV (c.o.m.) 1300 tons NbTi LHC

The LHC has a total of ~*1230 dipoles and* ~*475 quadrupoles*

Dipole

Bending the beam

Uniform field

Quadrupole

Focusing the beam

Gradient field

Senatore C. Superconductivity and its applications <https://senatore.unige.ch/lectures/>

LHC dipole cross section LHC quadrupole cross section

Senatore C. Superconductivity and its applications <https://senatore.unige.ch/lectures/>

LHC DIPOLE: STANDARD CROSS-SECTION

1230 dipoles → 7000 km of this cable → 36 wires twisted together → ~*260,000 km of wire*

Nb-Ti

Niobium–titanium is an alloy with the quality of being rather INSENSITIVE to mechanical deformation

The production is based on hot extrusion of Nb-Ti and Copper billet

A sequence of cold drawing and intermediate heat treatment is used to produce small filaments necessary for thermal and electric stability

At the end of the production the wire is twisted to minimize coupling losses

Nb-Ti magnet assembly

LHC Design Report (The LHC Main Ring vol 1) CERN-2004-003.

Nb-Ti dipole magnet

The assembly steps after the winding phase are not showed (impregnation, curing, quench protection, collaring, etc.)

LHC Design Report (The LHC Main Ring vol 1) CERN-2004-003.

Outline:

- *Why superconductors?*
	- *The Large Hadron Collider*
	- *Niobium-titanium (Nb-Ti)*
- *Why Nb-Ti is not enough?*
	- *High Luminosity LHC (HL-LHC) and Future Circular Collider (FCC)*
	- *Niobium-tin (Nb₃Sn)*
- *Challenges of Nb³ Sn magnets*
- *Path toward solutions*

High Luminosity LHC

**High Luminosity LHC
Project**

HL-LHC project aims to crank up the performance of the LHC

The objective is to increase the integrated luminosity by a factor of 10 beyond LHC

HL-LHC

Luminosity is a key component to boost an accelerator's potential for new discoveries. Luminosity (L) is the ratio of the number of events detected (dN) in a certain period of time (dt) to the cross-section (σ)

To achieve the designated luminosity the beam will be more intense and more concentrated than at present in the LHC

New, more powerful quadrupole magnets, generating a 12 tesla magnetic field (compared to 8 T for those currently in the LHC), will be installed either side of the ATLAS and CMS experiments

Twelve of these magnets, made of Nb³ Sn will be installed close to each detector

The Nb³ Sn magnets will prove the feasibility for this technology and open the path toward FCC

 $L =$

 $\mathbf{1}$

dN

dt

 $\overline{\mathbf{0}}$

The Future Circular Collider

Nb³ Sn

Nb³ Sn has a much higher critical current, field and temperature than Nb-Ti

Nb³ Sn is the preferred material for the windings of the coils with magnetic field above 10 T

But Nb³ Sn has a reduced mechanical strain tolerance:

- *It is a brittle compound prone to fractures*
- *Critical current density (I c) strongly depends on mechanical strain applied to the conductor*

Critical current density lines at 4.2 K

Outline:

- *Why superconductors?*
	- *The Large Hadron Collider*
	- *Niobium-titanium (Nb-Ti)*
- *Why Nb-Ti is not enough?*
	- *High Luminosity LHC (HL-LHC) and Future Circular Collider (FCC)*
	- *Niobium-tin (Nb₃Sn)*
- *Challenges of Nb³ Sn magnets*
- *Path toward solutions*

High fields come with large electro-mechanical forces

Nb³ Sn Rutherford cable for HL-LHC, 40 strands

The peak stresses act on transverse direction

- *The magnet performance will be determined by the ability of Nb³ Sn wires to withstand the mechanical loads*
- *We need to set a safe stress limit for Nb³ Sn superconducting coils*
- *We need strategies to improve the strain tolerances*

Design options for the 16 T FCC dipoles

h2020 EuroCirCol WP5, started in 2015

WP leader: Davide TOMMASINI, CERN

All designs for the 16 T dipoles share a peak stress in transverse direction in the range 150-200 MPa at operation

Outline:

- *Why superconductors?*
	- *The Large Hadron Collider*
	- *Niobium-titanium (Nb-Ti)*
- *Why Nb-Ti is not enough?*
	- *High Luminosity LHC (HL-LHC) and Future Circular Collider (FCC)*
	- *Niobium-tin (Nb₃Sn)*
- *Challenges of Nb³ Sn magnets*
- *Path toward solutions*

How to isolate the transverse stress?

Limited information is from coil tests on the behavior of a single wire

- *Difficult to isolate the role of the wire properties in the overall magnet performance*
- *Single wire tests capable to reproduce the magnet behavior are necessary*

Sgobba, S. (2021) *Workshop on State-of-the-Art in High Field Accelerator Magnets* **Calzolaio, C.** *Supercond. Sci. Technol* **28**, 055014, (2015)

Single wire electro-mechanical test

The wire is impregnated in a closed cavity with epoxy resin

Measurements at different magnetic fields. In general, B = 16-19 T

Calzolaio, C. *Supercond. Sci. Technol* **28**, 055014, (2015) *Gämperle L. (2020) Phys Rev Res 013211*

Single wire electro-mechanical test

We call the irreversible limit as the force level leading to a 95% recovery of the initial I ^c upon force removal

Two mechanisms govern the irreversible degradation of the critical current under mechanical load:

• *Formation of cracks in the Nb³ Sn filaments*

• *Plastic deformation of the matrix and residual stress on the Nb³ Sn filaments*

Gämperle L. (2020) Phys Rev Res 013211 Troitino, J. F. et al. Supercond. Sci. Technol 34, (2021)

How to improve wire technology?

Mechanical FE Models based on:

- *Experimental results*
- *Real 3D wire geometry*

FEM goals:

- *New insights into electromechanical properties of Nb³ Sn wires*
- *Design new wires with higher mechanical limits*

Validation of the FEM using the wire 3D reconstruction, after mechanical stress experiment, to compare the cracks distribution to the simulated peak stress distribution

ESRF

UNIVERSITÉ

DE GENÈVE **FACULTÉ DES SCIENCES**

X-Ray microtomography: ESRF - ID19

Synchrotron-based microtomography using hard X-rays (about 80 keV) is suited to study the internal features of dense materials

It allows to detect Nb³ Sn filaments, voids and cracks in a 3D volume in a non-invasive, non-destructive way

~ *0.7 m/pixel resolution*

Machine Learning and Neural Network

Step 1: Unsupervised Machine Learning (UML) Tomography Analysis Tool (TAT) was developed to isolate the different components (voids and sub-elements) in a superconducting wires. TAT exploits k-means applied to X-Ray microtomography. TAT is not able to recognize cracks.

Nh.Sn sub-elem

Conner matrix

Bagni, T. *et al.* (2021) *Sci. Rep* **11**, 7767 **Bagni, T.** *et al. IOP SciNotes* **3**, 015201 (2022) **Bagni, T.** *et al. Supercond. Sci. Technol* **35**, 104003 (2022) • *Cracks in red*

Step 2: Convolutional Neural Network (CNN) U-Net is a CNN trained using X-Ray microtomography to detect specific features in superconducting wires (e.g., cracks and voids) based on their shape and position

- *CNNs are more flexible than UML*
- *U-Net was able to successfully detect cracks and voids allowing the 3D reconstruction of these components*

[TAT Open Source: <https://tat.readthedocs.io/en/latest/index.html>]

2D FE mechanical model

Simplified FE model to demonstrate the efficacy of the method:

- *2D geometry extracted from the SEM images of real RRP wires*
- *Bronze in the sub-elements (no voids)*

Bagni, T. *et al. Supercond. Sci. Technol* **Paper in preparation**

NEW wire design

Conclusion

- *Superconducting accelerator magnets are the enabling technology for present and future particle accelerators in HEP. All the present accelerator magnets have used Nb-Ti. The practical performance limit of Nb-Ti is 8–9 T*
- *The HL-LHC promises a technology breakthrough with the introduction of Nb₃Sn in the superconducting materials suitable for accelerators*
- *The development of a new generation of dipole and quadrupole magnets with nominal operation fields up to 16 T based on Nb³ Sn is a key component for the design of FCC*
- The present research focus is on increasing the performance of Nb₃Sn wires electro*mechanical loads necessary to the exploitation of Nb³ Sn on large scale*

