The saga of planetesimal formation at planetary gap edges

Linn Eriksson Anders Johansen, Thomas Ronnet, Beibei Liu, Antoine Petit, Ravit Helled, Claudio Valletta

Lund Observatory

From January: IACS postdoctoral fellow Stony Brook University, NY

Credit: ESO/L. Calçada

ALMA partnership et al. (2015)

ALMA partnership et al. (2015)

Protoplanetary disk evolution

- 99% gas 1% solids
- Accrete onto the star

ALMA partnership et al. (2015)

Wyatt MC. 2008.Annu. Rev. Astron. Astrophys. 46:339–83

Protoplanetary disk evolution

- 99% gas 1% solids
- Accrete onto the star
- Viscous accretion disk

ALMA partnership et al. (2015)

Dust $\sim 10^{-6}$ m

Source: Brownlee & Jessberger

Pebbles ~ 10^{-3} m

Blum et al.(2014)

From dust to pebbles

Collisions between dust \rightarrow

- Sticking
- Bouncing
- Fragmentation

Source: Brownlee & Jessberger

Pebbles ~ 10^{-3} m

Blum et al.(2014)

From dust to pebbles

Collisions between dust \rightarrow

- Sticking
- Bouncing
- Fragmentation

From pebbles to planetesimals

Pebbles ~ 10^{-3} m

Blum et al.(2014)

Source: ESA/Rosetta/NavCam

Collisional growth stops at ∼mm-sizes Gravitational collapse of particle clumps Need to concentrate particles → Streaming instability

 $v_{\rm K}$

Gas

Radial drift

Streaming instability

00.

Streaming instability

Streaming instability

00

Youdin & Goodman (2005) Johansen et al. (2015)

Source: ESA/Rosetta/NavCam

The saga of planetesimal formation at planetary gap edges

The planet interpretation:

- Growing planets open gaps in the gas disk
- Drifting pebbles become trapped at the gap edges
- Favourable location for planetesimal formation via the streaming instability

The saga of planetesimal formation at planetary gap edges

- 1. Do planetesimals form at planetary gap edges?
- 2. What is the effect on disk evolution?
- 3. What is the fate of these planetesimals?
 - Where do they end up?
 - Accretion onto planets?

Planetesimal formation at gap edges Nominal case <u>without</u> planetesimal formation

Global 1D models with

Eriksson et al. (2020)

particles

- Viscous evolution disk
- 3 planets location: major gaps in HL Tau
- 100,000 particles
 - Drag
 - Stirring via turbulent diffusion
 - Coagulation (Güttler et al. 2010)

ALMA partnership et al. (2015)

Planetesimal formation at gap edges Nominal case <u>with</u> planetesimal formation

Global 1D models with

Eriksson et al. (2020)

particles

- Planetesimal formation via the streaming instability (Yang et al. 2017)
- Linear pressure scaling (Bai & Stone 2010)

10-2

Stokes number

 Upper limit on amount of planetesimal formation

Yang et al. (2017)

Planetesimal formation at gap edges Nominal case <u>with</u> planetesimal formation

Significant planetesimal formation at planetary gap edges (e.g. Stammler et al. 2019; Carrera et al. 2021) 120 Mass in planetesimals $[M_{\oplus}]$ 07 09 09 08 001 $M_{\rm plan}=279~{\rm M}_\oplus$ 0 20 30 60 70 90 10 40 50 80 100 110 120 Semimajor axis [au] 10⁻² 1000 kyr^{\pm} Particle size [m] 10-3 -Planet 10⁻⁵ 10⁻⁶ 20 30 40 8 9 10 50 60 70 80 90 100 200

Semimajor axis [au]

Global 1D models with

Eriksson et al. (2020)

particles

- Planetesimal formation via the streaming instability (Yang et al. 2017)
- Linear pressure scaling (Bai & Stone 2010)
- Upper limit on amount of planetesimal formation

Global 1D models with particles

Planetesimal formation at gap edges Effect on disk evolution

Planetesimal formation at gap edges Effect on disk evolution

Global 1D models with

particles

Global 1D models with particles

Eriksson e t al. (2020)

Planetesimal formation at gap edges Effect on disk evolution

Planetesimal formation at gap edges Effect on disk evolution

Global 1D models with

Eriksson e t al. (2020)

particles

What is the fate of planetesimals formed at planetary gap edges?

Start simple

N-body

Eriksson et al. (2021)

- No disk evolution
- Planets with constant mass & no migration
- Form all planetesimals at the gap edges at t = 0with $e \sim 0$

Planetesimals formed at planetary gap edges do not remain at their birth locations

N-body

Eriksson et al. (2021)

Planetesimals scattered into the inner parts of young/massive disks suffer efficient ablation

N-body

Eriksson et al. (2021)

N-body Eriksson e t al. (2021)

The fate of planetesimals formed at gap edges Where do they end up?

Planetesimal formation at gap edges of Jupiter & Saturn

Planetesimals form closer to star \rightarrow higher disk density \rightarrow higher surface temperatures \rightarrow more ablation

The fate of planetesimals formed at gap edges Consequences of ablation?

N-body

Eriksson et al. (2021)

N-body

Eriksson e t al. (2021)

The fate of planetesimals formed at gap edges Consequences of ablation?

A large fraction of the vaporized ices re-condense to form solid ice \rightarrow re-coagulate to form new pebbles \rightarrow flux of pebbles interior of the planets

 \rightarrow Transport of pebbles across planetary gaps

N-body

Eriksson et al. (2021)

Why do we care?

Eriksson et al. (2022)

N-body

- Total heavy-element mass in Jupiter & Saturn estimated to $M_z \gtrsim 20 M_{\bigoplus}$ (Wahl et al. 2017; Helled & Guillot 2013)
- Total heavy-element mass in exogiants estimated to M_z~10 − 100 M_⊕ (Guillot et al. 2006; Miller & Fortney 2011; Thorngren et al. 2016)

 \rightarrow Giant planets typically have atmospheres enriched in heavy-elements

- <u>Common explanation</u>: accretion of planetesimals during the gas-accretion phase (Alibert et al. 2018; Venturini & Helled 2020; Shibata et al. 2020, 2022)
- Studies typically assume a massive wide-stretched disk of planetesimals
- How efficient is the accretion of planetesimals formed at planetary gap edges?

Eriksson e t al. (2022)

The fate of planetesimals formed at gap edges Accretion onto planets?

More advanced model

- + Disk evolution
- + Gas-accretion (2 schemes)
- + Migration
- + Add core formation for Saturn
- + Capture radius prescription
- + Continuous planetesimal formation
- Ablation

Valletta & Helled (2021)

- 1. Core formation $(M_p < M_{iso})$
- 2. Attached phase ($M_{env} < M_{core}$)
- 3. Detached phase ($M_{core} < M_{env}$)

<u>Planetesimals</u>

Assumption 1: no planetesimal formation before the end of core formation (M_{iso}) Assumption 2: all pebbles reaching the gap edge are turned into planetesimals

 \rightarrow Upper limit on planetesimal mass

→Once Saturn reaches M_{iso} → pebble flux towards Jupiter halted → no more planetesimal formation at Jupiter's gap edge

N-body

Eriksson e t al. (2022)

The fate of planetesimals formed at gap edges Accretion onto planets?

➤ Total formed planetesimal mass at the gap edges is: $\sim 20 - 30M_{\oplus}$

- Maximum accretion efficiency: <10%
- Maximum accreted mass onto Jupiter: 3.1 M_⊕
- Maximum accreted mass onto Saturn: 2.2 M_⊕

Very inefficient process

Vary formation location

- Outside the feeding zone: Very few collisions
- Inside feeding zone: Many more collisions

Vary planetesimal size

• No significant effect

Vary gas-accretion scheme

• Longer migration \rightarrow more accretion

N-body

Eriksson e t al. (2022)

Gas accretion scheme 2 The fate of planetesimals formed at gap edges Accretion onto planets?

- Maximum accretion efficiency: <10%
- Maximum accreted mass onto Jupiter: 3.1 M_⊕
- Maximum accreted mass onto Saturn: $2.2 \text{ M}_{\bigoplus}$

Very inefficient process

Vary formation location

- Outside the feeding zone: Very few collisions
- Inside feeding zone: Many more collisions

Vary planetesimal size

• No significant effect

Vary gas-accretion scheme

• Longer migration \rightarrow more accretion

N-body

Eriksson et al. (2022)

N-body

Eriksson e t al. (2022)

- Maximum accretion efficiency: <10%
- Maximum accreted mass onto Jupiter: 3.1 M_⊕
- Maximum accreted mass onto Saturn: 2.2 M_⊕

Very inefficient process

Vary formation location

- Outside the feeding zone: Very few collisions
- Inside feeding zone: Many more collisions

Vary planetesimal size

• No significant effect

Vary gas-accretion scheme

• Longer migration \rightarrow more accretion

N-body

Eriksson et al. (2022)

Conclusion

Hard to explain high heavy element content of giant planets with this process

Solutions:

- Long migration through a wide-stretched disk of planetesimals (Shibata et al. 2022)
- Accretion of enriched gas from inwards drifting and evaporating pebbles (Booth et al. 2017, Schneider & Bitsch 2021a,b)
- Giant impacts and mergers (Li et al. 2010, Liu et al. 2019)

The saga of planetesimal formation at planetary gap edges

Summary so far

- 1. Significant planetesimal formation at planetary gap edges
- Major implications for distribution of pebbles & thus how disk appear in observations
- 2. Planetesimals formed at planetary gap edges do not remain at their birth locations
- Efficient ablation in inner parts of young disks
- 3. The accretion efficiency of planetesimals formed at planetary gap edges is very low
- Hard to explain enriched atmospheres of giant planets via this process

