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Metals as tracers of Milky Way assembly

Heracles Sagittarius Helmi Streams

Horta et al. 2022, Belokurov & Kravisov 2022



Star formation and galaxy evolution are well studied in Milky Way-like
galaxies at Solar metallicity.

But... most galaxies in the Universe are smaller and have less metals as
compared to the Milky Way.



Key Questions

How do stars form at zero and low metallicitye
What is the initial mass function (IMF) at low metallicitiese
What is the metal content of low metallicity galaxies?

Once produced, how are metals fransported all around galaxies?
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Low metallicity star formation

Interstellar medium (ISM) 10%M LOM 102M_
metallicity significantly impacts ; 2 ?
star formation, the initial mass
function (IMF), and subsequent
metal production.

_ [z/H]=-, -5, -3, -1
———— [2/H)=-8, -4, -2, 0

Star formation and the IMF in zero
and low metallicity ISM remain

largely unexplored. /
//-" y

This limits our understanding of the e / 10-2M,, 7 107M,
first and metal-poor stars, first 1 2 P
galaxies and metal enrichment in 15 20

the early Universe.
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Variations in the IMF with metallicity
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Variations in the IMF with metallicity
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Variations in the IMF with metallicity
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First stars — historical context

Earliest simulations of the
formation of first stars found
them to be isolated and as
massive as 100 — 200 Mg
(Bromm et al. 2000, 2002, Abel
et al. 2002).

Development in numerical
techniques led to the discovery
of ubiquitous fragmentation in
collapsing first molecular clouds
down o 0.5 Mg

(Clark etfal. 201 1,"Greif2012).

Clark et al. 2011
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No first stars have ever been observed.
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Simulating formation of the first stars

Chemo-magnetohydrodynamic
(chemo-MHD) simulafions of the
formation of the first stars using
FLASH.

Large statistics required o
overcome stochasticity due to
turbulence.

Staftistically study the importance
of turbulence and magnetic fields
on the IMF of the first stars.
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Impact of magnetic fields

Chemo-HD

Chemo-MHD
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IMF of the first stars

Sharda et al. 2020b, 2021a
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Magnetic fields significantly change the mass distribution of first stars
by suppressing fragmentation and formation of low mass first stars.



Variations in the IMF with metallicity
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When did the IMF become bottom-heavye

Low pressure environments

Top-heavy |

logyg me/Mg
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The IMF became bottom-heavy between 107* — 107% Zg in Milky Way-type galaxies.
The IMF is sensitive to C and O abundances at low metallicifies.

Sharda & Krumholz 2022; Sharda, Amarsi et al. 2023




Large-scale metal distribution

The mass distribution of massive stars directly sets the metal yield of galaxies.

Metal distribution on large scales provides important clues on stellar
assembly and galaxy evolution.

Connecting small-scale metal enrichment to large-scale metal distribution
remains a challenging problem for simulations.

Naab & Ostriker 2017, Kewley et al. 2019



Measuring gas-phase metallicity
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Mass-metallicity relation (MZR)
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Mass-metallicity relation (MZR)
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Integral Field Unit Speciroscopy

Law et al. 2016

Thanks to IFU Spectroscopy, we can now measure metallicities in spatially-resolved
regions in thousands of galaxies.
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Metal distribution in galaxies
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New model for metallicity gradients

gas accretion into halo

gas accretfion into galaxy wind outflow

-

Zwind +Z ISM

variable gas reservoir
sta r—. .
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Radial flows |6 ng1iv2HUSION

Sharda et al

.2021b

Includes major modes of metal tfransport.
Includes differential enrichment of outflows.

Can be applied to a wide-range of galaxies,
both in the local and high-z Universe.

Model parameters independently constrained
by galaxy evolution theory.
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Mass-metallicity gradient relation (MZGR)

MZGR is the scaling of metallicity gradients with galaxy mass.

The local MZGR has recently been produced from different IFU galaxy surveys.

The origin of the local MZGR is not well understood.

Sanchez et al. 2014, SGnchez-Menguiano et al. 2016,
Belfiore et al. 2017, Poetrodjojo et al. 2019, 2021, Mingozzi et al. 2020
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Mass-metallicity gradient relation (MZGR)

Sharda et al. 2021c
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MZGR steepens from low to intermediate masses, and then flattens again.

The curvature in the MZGR is robust against systematics due to metallicity
calibrations.



Mass-metallicity gradient relation (MZGR)

Sharda et al. 2021c
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Galaxies transition from being transport-dominated to being accretion-
dominated at the location where the MZGR shows a curvature.

Low-mass (M, < 10%° Mg) galaxies preferentially lose metals in galactic winds.



Are galactic winds metal-enrichede
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- Chisholm et al. (2018)

Low-mass (M, < 10°° M) galaxies preferentially lose metals in galactic winds.



Metallicity gradients and kinematics

In addition to galaxy mass, we can also
study the dependency of metallicity

gradients on gas kinematics from the model.

This is more easily done at high redshifts
where galaxies show a large diversity in their
gas kinematics.

The role of gas kinematics in seffing
metallicity gradients remains unexplored
(Queyrel et al 2012, Gillman et al 2021).
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Metallicity gradients and kinematics

Sharda et al. 2021d
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High velocity dispersion - efficient metal mixing - flat metallicity gradients.

Low velocity dispersion - efficient metal dilution - flat metallicity gradients.



Summary

Metals act as nature’s Lagrangian tracers of multi-scale structure formation.

Studying the first galaxies will require understanding both small scale (1-100 pc) and large
scale (1-10 kpc) metal enrichment.

Low metallicity star formation

IMF at zero metallicity is significantly shaped by physical processes such as turbulence and
magnetic fields.

IMF at zero and ultra-low metallicities can be significantly different from the Milky Way IMF.

Large-scale metal distribution

Low-mass (M, < 10%° Mg) galaxies preferentially lose metals through galactic winds.

Massive (M, > 1019 Mg) galaxies and galaxies with high gas velocity dispersions show flat
metal distributions regardless of the nature of their winds.

Email: sharda@strw.leidenuniv.nl




