

UPPSALA UNIVERSITET

How to differentiate a rocky planet: insight from the basaltic volcanism of the Moon

Renaud Merle¹, Alexander Nemchin², Martin Whitehouse³, Joshua Snape⁴, Gavin Kenny³, James Connelly⁵, Martin Bizzarro⁵

- 1: Uppsala University
- 2: Curtin University, Australia
- 3: Swedish Museum of Natural History
- 4: University of Manchester, UK
- 5: Centre for star and planet formation, Denmark

Formation of the rocky planets

Carbonaceous chondrite

Rocky planet

Unnamed carbonaceous chondrite from my drawer

Image credit: Purdue Uni.

Heterogeneous material No structure

Layered structure: core, mantle and crust

How to achieve this?How long to achieve this?

The formation of planets

Step 1 = Accretion:

Beginning of collision between newly formed objects

Then a lot of collisions
Planetesimal formation

 (solid objects of 1-100 km)

Planetesimals → planetary embryos → planets

Less and less collisions but more and more energetic

Planetesimal Lutetia (image from ESA website)

Image from NASA website

Step 2 = Planetary-scale melting (relevant for rocky planets)

Heat from collisions and radioactive elements accumulation

Migration of the elements and compounds within the planetary body according to density

Planetary differentiation

Internal structure of rocky planets (based on Earth's)

Differentiation of the planets

Alternative models

From Minarik, Nature, 2003.

Geology of the Moon ("selenology")

Anorthosite crust 90-100% anorthite (K-Al-Ca plagioclase)

Regolith = "lunar soil" covers all the planet

Basalt (≈ lavas from Hawaii)

Image from NASA website

Less than 600kg of rocks from the Moon:

Apollo (USA): 380kg Luna (USSR): 301g Chang'e 5 (China): 1.7g Meteorites: 190kg

A brief overview of the Early history of the Moon

Lunar meteorite NWA14178 (Image from L. Labenne)

1. Initial formation (Very chaotic): ~4500-4400 Ma Giant impact between a Mars-size object and Earth

Isotope evidence of genetic relation between Earth and the Moon: Similar Oxygen and Titanium Isotope ratios

Image from SSERVI-Nasa website

2. Planetary differentiation: ~4500-4400 Ma?

Accumulation of heat from impact and radioactive elements led to a global magma ocean (Lunar Magma Ocean: LMO)

LMO crystallisation sequence hypothesis

- Denser minerals (olivine first then pyroxene), crystallised first then sank and accumulated forming different layers
 - Formation of a stratified mantle with layers of different compositions
- At some stage, plagioclase (anorthotite) crystallised but was less dense than the remaining liquid and formed a compact crystal network floating on the top of the liquid

Image from Wikipedia

Formation of the anorthositic crust

2. Planetary differentiation: ~4500-4400 Ma?

Accumulation of heat from impact and radioactive elements led to a global magma ocean (Lunar Magma Ocean: LMO)

LMO crystallisation sequence hypothesis

- Denser minerals (olivine first then pyroxene), crystallised first then sank and accumulated forming different layers
 - Formation of a stratified mantle with layers of different compositions
- At some stage, plagioclase (anorthotite) crystallised but was less dense than the remaining liquid and formed a compact crystal network floating on the top of the liquid

This is a model This is not confirmed so far

3. Volcanic activity: ~4400-2000 Ma (?)

10022 Ilmenite Basalt (high K) 95.6 grams

Apollo 11 Ianding site

Lunar

meteorite

Images from Nasa website

The chemical groups of lunar basalts

Low Titanium (TiO₂ < 6% wt%) = Low-Ti group</p>

→ Several subgroups

 Low ²³⁸U/²⁰⁴Pb (²³⁸U/²⁰⁴Pb = μ) basalts
→ Depleted in REE and other mineralincompatible elements compared to the other basalts (= "depleted source")

ightarrow Most abundant basalt type on the Moon

 \Box High-Titanium (TiO₂ > 6% wt%) = High-Ti

Source

last liquid crystallised from LMO

High Potassium-REE-Phosphorus-U = KREEP

→ Enriched in REE and other mineralincompatible elements compared to the other lunar basalts (= "enriched source")

ightarrow High 238 U/ 204 Pb (µ)

Sandwiched between the crust and mantle layers source of the low-Ti and high-Ti basalts

What are the processes involved in the formation and chemical evolution of the lunar mantle?

- From which cumulate layers are derived the different chemical groups ?
 - How many mantle chemical components?
 - Should we expect other chemical types of basalts?
 - What is the chemical composition of these components?
- When the mantle components formed (end of LMO crystallisation)?
 - When really started the basaltic volcanism?
 - How long it lasted (exhaustion of mantle component)?

Age of the Moon?

 Limited constraints on the chemical characteristics of the mantle sources of the basalts

Few radiogenic isotope data available (= classic toolkit for mantle source tracing)

- Data with large uncertainty
- No systematics using <u>Sr-Nd-Pb-Hf initial</u> isotopic ratios

(⁸⁷Sr/⁸⁶Sr)_{meas} = (⁸⁷Sr/⁸⁶Sr)₀+ ⁸⁷Rb/⁸⁶Sr (e^{λRb*t}-1)

- Poor chronological constraints on the timing of the volcanic activity
 - Few data
 - Low precision of the data
 - Inconsistency of dates obtained by different techniques on the same sample
 - Methodological and analytical issues

From Stacke, Encyclopedia of Geochemistry, 2018.

Methodological approach

- 1. Determination of accurate and reliable chronology of lunar basaltic magmatism
- 2. Determination of radiogenic isotope ratios of lunar basalts

How to date lunar basaltic rocks?

Classic radiometric techniques:

- ⁴⁰Ar-³⁹Ar
- Rb-Sr
- Sm-Nd
- U-Pb

Based on the radioactive decay of a element (⁴⁰K, ⁸⁷Rb, ¹⁴³Sm, ²³⁵U and ²³⁸U) into a daughter element (³⁹Ar, ¹⁴³Nd, ²⁰⁶Pb and ²⁰⁷Pb)

Methodological approach

How to date lunar basaltic rocks?

Issues:

Few minerals suitable for dating (containing large quantities of parent element and no initial daughter element)

Impossible to monitor the presence of terrestrial contamination

(from sample prep., desert alteration)

A novel approach:

– In-situ Pb-Pb by SIMS

In-situ Pb-Pb dating by SIMS

Principle:

Construction of ²⁰⁷Pb/²⁰⁶Pb vs ²⁰⁴Pb/²⁰⁶Pb isochrons from insitu analyses of minerals containing Pb

Advantages:

- 1) Analysis of Pb isotopes only
- 2) High lateral resolution
- 3) Monitoring terrestrial Pb contamination

CAMECA IMS1280 at NRM-Geovetenskap

Lateral resolution: Possibility of analysing small individual grains containing Pb

- Phosphates
- (radiogenic + minor initial Pb bearing phase)
- Potassium feldspars (initial Pb bearing phase)
- Zr-oxides and -silicates (Baddeleyite, zircon, zirconolite: radiogenic Pb bearing phase)

From Merle et al., Meteoritics and Planetary Sciences, 2020.

Pb-Pb Isochron:

Monitoring terrestrial Pb contamination

U-Pb data contaminated by terrestrial Pb tend to yield older dates

Isochrons from lunar basaltic meteorites (low-Ti group)

Age = 3861 ± 5 Ma (95% confidence) on 46 points; MSWD = 0.91; Probability of fit = 0.64

Age = 3208 ± 22 Ma (95% confidence) Age = 2977± 13 Ma (95% confidence) on 33 points; MSWD = 1.4; Probability of fit = 0.077

on 42 points; MSWD = 1.2; Probability of fit = 0.18

Chronology of volcanic events on the Moon:

Updated from Merle et al., Meteoritics and Planetary Sciences, 2020.

Two main magmatic phases: 4000-3600 Ma and 3400-3100 Ma

initial Pb isotope ratios of lunar basalts

Early model

- Assumption 1: Moon formed at 4500Ma
- Assumption 2: All sources are formed at the same time

 $(^{206}Pb/^{204}Pb)_{t} = ^{238}U/^{204}Pb (e^{\lambda 238U*t}-1)+(^{206}Pb/^{204}Pb)_{0}$

initial Pb isotope ratios of lunar basalts: Looking for a new model

μ values of mantle sources calculated using Monte Carlo simulations

Gone the assumptions...

initial Pb isotope ratios of lunar basalts

Progressive contribution of a KREEP-like component in the source of the low-Ti basalts from 3400 Ma until 3100 Ma

Merle et al., Meteoritics and Planetary Sciences, 2020.

Low- Ti basalts are derived from source mixing involving two components:

- ▶ 10-20% KREEP
- ➢ 90-80% low-µ component

Plausible new model: Binary mixing

What is the driving process?

Thermo-mechanical erosion of KREEP layer (sandwiched between the crust and the other mantle layers)

Convection....

Concluding remarks (for now...)

We still don't know when the Moon formed and when LMO crystallisation terminated

- Do we have the relevant data?
- Need more data...

Better chronology of the volcanic activity

- 2 phases (4000-3600 Ma and 3400-3100 Ma)?
 - At least, we can make sense of radiogenic isotope ratios

Satisfactory model: Binary mixing (KREEP+Low μ components)

- explain the chemical characteristics of the low-Ti basalts
 - Partly satisfactory for High-Ti basalts

Driving process = convection

JOURNAL OF PETROLOGY

Thank you

2.1

