Understanding Reionization with 21cm observations of high-redshift analog galaxies

Alexandra Le Reste

Stockholm University

John Cannon, Matthew Hayes, John Inoue, Amanda Kepley, Jens Melinder, Veronica Menacho, Angela Adamo, Arjan Bik, Timmy Ejdetjärn, Gyula Józsa, Göran Östlin, Sarah Taft

January 12, 2023 Uppsala

History of the Universe

Cosmic reionization

Reionization:

- Period during which the bulk of neutral gas (HI) in the Universe is ionized by primordial sources.
- Last phase transition of the Universe.

 \rightarrow How does it happen?

How was the Universe reionized ?

How long does reionization take?

Observations

$Ly\alpha$ luminosity function

Observations suggest reionization is over by redshift 6

What objects are responsible for reionization?

Simulations

Ionizing photon emissivity evolution

Simulations indicate **dwarf galaxies** are the main source of ionizing photons during reionization.

How did galaxies reionize the Universe?

Neutral gas in the Interstellar medium absorbs LyC

$$\tau = 1 \text{ at } N_{HI} \sim 10^{17} cm^{-2}$$

In galaxies, $N_{HI} \approx 10^{19} - 10^{22} cm^{-2}$ \rightarrow Need low column density ISM

Need **5-20%** LyC escape fraction to reionize the Universe.

Absorption line studies in local emitters

Covering fraction of neutral gas : main parameter (unresolved absorption studies).

Absorption line studies in local emitters

Covering fraction of neutral gas : main parameter (unresolved absorption studies).

How did galaxies reionize the Universe?

To understand LyC escape and reionization, we need **resolved observations of the neutral gas** distribution

\rightarrow 21cm line of Hydrogen

21cm line of Hydrogen: hyperfine transition due to the spin flip of the electron

Emitted spontaneously by Hydrogen atoms in the ground state

 \rightarrow direct tracer of neutral Hydrogen

 $\theta \sim \frac{\lambda}{D}$ Diffraction limit: need **large** telescopes

Single dish telescope

Interferometer

 $\theta \sim \frac{\pi}{D}$ Diffraction limit: need **large** telescopes

Single dish telescope + very sensitive - limited in size

Interferometer

- + larger: better resolution
- less sensitive
- computationally expensive

 $\theta \sim \frac{\lambda}{D}$ Diffraction limit: need **large** telescopes

Single dish telescope

Interferometer

Current 21cm observational limit for an individual source: $z_{max} = 0.376$

21cm observations of LyC-emitting galaxies

Problem: we cannot observe neutral gas of individual galaxies at the Epoch of Reionization.

Solution: Observe nearby analog galaxies instead.

on-era objects

Th

otentially detectable in 21cm HI with interferometers.

alaxies with confirmed LyC detections with n 1000 Mpc.

Haro 11 : a special laboratory

- First and closest (z~0.02) LyC emitter to be detected (in Uppsala!)
- Blue compact galaxy
- SFR = 20-30 M_{\odot} /yr

- Escape fraction: 4-10%
- $12 + \log O/H = 7.9$
- $M_* = 1.6 \times 10^{10} M_{\odot}$

Bergvall et al. 2006

The Haro11 HI puzzle

2014MNRAS.438L..66M 2014/02 cited: 10 Detection of H I absorption in the dwarf galaxy Haro 11 MacHattie, Jeremy A.; Irwin, Judith A.; Madden, Suzanne C. and

The Haro11 HI puzzle

2014MNRAS.438L..66M 2014/02 cited: 10 Detection of H I absorption in the dwarf galaxy Haro 11 MacHattie, Jeremy A.; Irwin, Judith A.; Madden, Suzanne C. and

 2016AJ....152..178P
 2016/12
 cited: 10

 Detection of H I in Emission in the LYα Emitting Galaxy Haro 11

 Pardy, Stephen A.; Cannon, John M.; Östlin, Göran and 2 more

The Haro11 HI puzzle

2014MNRAS.438L..66M 2014/02 cited: 10 Detection of H I absorption in the dwarf galaxy Haro 11 MacHattie, Jeremy A.; Irwin, Judith A.; Madden, Suzanne C. and 2016AJ....152..178P 2016/12 cited: 10 Detection of H I in Emission in the LYα Emitting Galaxy Haro 11 Pardy, Stephen A.; Cannon, John M.; Östlin, Göran and 2 more

6535

21cm with the MeerKAT telescope

21cm with the MeerKAT telescope

2020 Open Time Call accepted proposals

Proposal Title	Principal Investigator	Priority Group
Observing HI in the Reionization Epoch Analog Galaxy Haro11	Alexandra Le Reste	А

What is happening in Haroll?

What is happening in Haro11 ?

Le Reste et al. 2023, subm. to Nature Astronomy arXiV: 2301.02676

What is happening in Haro11 ?

What is happening in Haro11 ?

Neutral gas content of the galaxy

Neutral gas mass:

 $M_{HI,em} = 7.99 \pm 0.85 \times 10^8 M_{\odot}$ $M_{HI,abs} = 3.30 \pm 2.41 \times 10^8 M_{\odot}$

Total mass of $1.1 \pm 0.3 \times 10^9 M_{\odot}$

Up to 82% of the total gas mass is offset from the locations where LyC is produced

Geometry results from merger interactions

The role of the merger

The merger plays several roles in enabling LyC escape in Haro11:

- Cause several starburst episodes: Creates massive stars
 → LyC production
- 2) Starburst generates largescale ionized channels
- 3) Large scale displacement of HI
 → anisotropic escape to IGM

Mergers and LyC escape

Are mergers a characteristic process for ionizing radiation to escape the interstellar medium of galaxies?

neutral gas distribution?

Undetected, $M_{HI} < 10^9 \ M_{\odot}$ Puschnig et al. 2017

MeerKAT proposal to be submitted soon

Mergers and LyC escape

Green pea galaxies

Cardamone 2009

Analogs to high-redshift galaxies

Unresolved HI observations:

One resolved HI observation:

Purkayastha et al. 2022

Detect 19/44 galaxies 22% have HI properties indicating merger

Merger facilitates $Ly\alpha$ escape.

Kanekar 2021

Conclusions

- High-redshift analogs: detailed observations of physical and radiative processes
- First direct HI imaging in a confirmed LyC emitting galaxy, Haro11
- The neutral gas is offset due to merger interactions
- Mergers of galaxies/environment could contribute to reionization:
 → Need systematic assessment of the impact of environment.

Thank you for your attention !

Radio continuum source

S-band (3GHz)

Neutral gas at absorption location

Interstellar medium of Haro11 - a model

lonized gas structure

