and a chemically pecultar star) the Galactic disk and bulge

Rebecca Forsberg Uppsala University – 27th April 2023

Who am I?

BSc in planet formation modelling MSc and PhD in stellar spectroscopy and Galactic Archaeology

Nils Ryde Lund

Henrik Jönsson Malmö

> **Rebecca Forsberg** Uppsala University – 27th April 2023

Science Communication internship at ESO HQ, Munich Germany

Anders Johansen Copenhagen

the Meridian The Meridian

Lund Observatory

Back to the Milky Way

- -Brief nucleosynthesis
- -Stellar sample
- -Abundance determination

Rebecca Forsberg Uppsala University – 27th April 2023

- Forsberg at al. 2019 Zr, La, Ce and Eu in the bulge & disk

- Forsberg at al. 2022 Molybdenum in the bulge & disk

- Forsberg et al. 2023 R-process enriched star in the bulge

Why study neutron-capture elements in the Bulge?

• How did the bulge form, and what does it look like?

Classical, spherical, old Higher SFR —> possibly higher r-process

- Today, we consider the bulge to be much of a psuedo-bulge with a bar
- But is there a classical (r-rich) component in the bulge?

VS.

psuedo-bulge, younger Slower SFR —> similar to disk

Neutron capture

- Above iron-peak elements
- Formed by neutron-capture processes: $n \longrightarrow p + e + v$
- Beta-decay more likely than neutron-capture, slow process
- Beta-decay less likely than neutron capture, rapid process

put some constraints on where these processes can take place

Neutron capture

- The s-process takes place in
 - AGB stars during third dredge-up, n-source: ${}^{13}C(\alpha,n){}^{16}O$
 - Massive stars, n-source: ${}^{22}Ne(\alpha,n){}^{25}Mg$ Karakas & Lattanzio 2014, Bisterzo et al. 2017
- Weak (Cu, Rb), main (Ba, La), strong (Tl, Pb)
- Still uncertainties on the effects of stellar rotation, the size of the ¹³C-pocket, lowmetallicity production...

Neutron capture

- The r-process takes place in
 - Neutron star mergers

Sneden et al. 2000, Thielemann et al. 2011, 2017 Abbott et al.2017, Tanvir et al. 2017, Drout et al. 2017

- Various supernovae (CC, MR, EC) Côté et al.2019, Kajino et al. 2019, Kobayashi et al. 2020

Still uncertain!

Measuring elements originating from the s-process and the r-process can give signatures of these events historically in the Galaxy

It's really about isotopes

Talk about *dominated* production from either process

57 La Ba 56 55 Cs 54 Хе 53 52 51 Te Sb 50 Sn 49 48 47 In Cd Ag Pď 46 45 Rh Ru 44 42 Мо 41 Nb **40** 39 Zr \vee 38 37 Sr Rb 36 Kr Br 35 34 Se As Ge 33 32 31 Ga

138 139	83	Bi		209
130 132 134 135 136 137 138	82	Pb		204 206 207 208
133	81	ΤI		203 205
124 126 128 129 130 131 132 134 136	80	Hq		196 198 199 200 201
127	79	Aŭ		197
120 122 123 124 125 126 128 130	78	Pt		190 192 194 195 196
121 123	77	lr		191 193
112 114 115 116 117 118 119 120 122 124	76	0s		184 186 187 188 189
	75	Re		185 187
106 108 110 111 112 113 114 116	74	W		180 182 183 184 186
	73	Ta		180 181
102 104 103 100 100 110	72	Ηf		174 176 177 178 179
	71	Lu		175 176
<u>30 39 100 101 102 104</u>	70	Yb		<u>168</u> 170 171 172 173
92 94 95 96 97 98 100	69	Tm		169
93	68	Er		162 164 166 167 168
90 91 92 94 96	67	Ho		165
89	66	Dy		156 158 160 161 162
84 86 87 88	65	Tb		159
85 87	64	Gd		152 154 155 156 157
78 80 82 83 84 86	63	Łu		151 153
79 81	62	Sm		144 147 148 149 150
74 76 77 78 80 82 r	~~			
75	60	Nd		142 143 144 145 146
70 72 73 74 76 P	59	Pr		
8 69 71	200	Ce		136 138 140 142 ×
	Р	rant	ZOS	et al. 2020

The case of molybdenum

Mo

)-[process
-----	---------

57 La 56 Ba 55 Cs 54 Xe 53 I 52 Te 51 Sb 50 Sn 49 In 48 Cd 47 Aq	138 139 130 132 134 135 136 137 138 133 133 124 126 128 129 130 131 132 134 136 124 126 128 129 130 131 132 134 136 127 120 122 123 124 125 126 128 130 121 123 124 125 126 128 130 121 123 116 117 118 119 120 122 12 113 115 116 117 113 114 116 106 108 110 111 112 113 114 116 107 109 109 101 111 112 113 114 116	83 Bi 82 Pb 81 TI 80 Hg 79 Au 78 Pt 78 Pt 77 Ir 76 Os 75 Re 74 W 73 To	209 204 206 207 208 203 205 196 198 199 200 201 202 204 197 190 192 194 195 196 198 191 193 184 186 187 188 189 190 192 185 187 183 184 186 187 184 186
46 Pd 45 Rh 44 Ru	102 104 105 106 108 110 103 96 98 99 100 101 102 104	73 Id 72 Hf 71 Lu 70 Yb	180 181 174 176 177 178 179 180 175 176 168 170 171 172 173 174 176
42 Mo 41 Nb 40 Zr 39 Y 38 Sr 37 Rb 36 Kr	92 94 95 96 97 98 100 93 90 91 92 94 96 89 84 86 87 88 85 87 84 86 87	69 [m] 68 Er 67 Ho 66 Dy 65 Tb 64 Gd 63 Eu	169 162 164 166 167 168 170 165 156 158 160 161 162 163 164 159 152 154 155 156 157 158 160 151 153 153 156 157 158 160
35 Br 35 Br 34 Se 33 As 32 Ge 31 Ga	70 81 S 74 76 77 78 80 82 r 75 70 72 73 74 76 P 69 71 71 78 80 82 P	62 Sm 60 Nd 59 Pr 58 Ce	144 147 148 149 150 152 154 142 143 144 145 146 148 150 141 136 138 140 142

Prantzos et al. 2020

- 35 proton rich isotopes from the p-process (Burbidge et al. 1957, Rauscher et al. 2013)
- Not necessarily proton capture...

Photodisintegration of heavy isotopes in the O/Ne-shell of massive stars during CC SNe explosions, γ -process

Neutrino winds, SNe, *v*-process

Should behave like a typical alpha- and iron-peak element

- 35 proton rich isotopes from the p-process (Burbidge et al. 1957, Rauscher et al. 2013)
- Not necessarily proton capture...

Should behave like a typical iron-peak element

- 35 proton rich isotopes from the p-process (Burbidge et al. 1957, Rauscher et al. 2013)
- Not necessarily proton capture...

Don't know what this would look like!

The case of molybdenum – a conundrum for planet-formation community

In solar system meteorites...

- Excess of Mo p- and r-isotopes
- Deficit of Mo s-isotope 42 Mo ...relative to the Earth

Burkhardt et al. 2011, Budde et al. 2016, 2019

• To understand the p-process, Mo is the element to study

Abundances of disk and bulge giants from high-resolution optical spectra

I. O, Mg, Ca, and Ti in the solar neighborhood and Kepler field samples

H. Jönsson^{1, 2, 3}, N. Ryde¹, T. Nordlander⁴, A. Pehlivan Rhodin^{1, 5}, H. Hartman^{1, 5}, P. Jönsson⁵, and K. E

Abundances of disk and bulge giants from high-resolution optical spectra

II. O, Mg, Ca, and Ti in the bulge sample*

H. Jönsson^{1, 2, 3}, N. Ryde¹, M. Schultheis⁴, and M. Zoccali^{5, 6}

Abundances of disk and bulge giants from high-resolution optical spectra

III. Sc, V, Cr, Mn, Co, Ni $\star,\star\star$

M. Lomaeva¹, H. Jönsson¹, N. Ryde¹, M. Schultheis², and B. Thorsbro¹

ion
S ^{★,★★}
Eriksson ⁴

Abundances of disk and bulge giants from high-resolution optical spectra

IV. Zr, La, Ce, $Eu^{\star,\star\star}$

R. Forsberg¹, H. Jönsson^{1,2}, N. Ryde^{1,3}, and F. Matteucci^{4,5,6}

Abundances of disk and bulge giants from high-resolution optical spectra

V. Molybdenum: The p-process element^{*,**}

R. Forsberg¹, N. Ryde¹, H. Jönsson², R. M. Rich³, and A. Johansen^{1,4}

- 5800 6800 Å

- UVES: 5800-6800 Å, S/N ~ 50

Differential comparison between disk and bulge

Determining the abundance of Mo

•	Use Spectroscopy Made Easy	1.2
	(SME. Valenti & Piskunov & 1006, 2017)	
	to create synthetic spectra	
	Model atmosphere	
	- Model atmosphere	0.2
	MARCS, Gustafsson et al. 2008	0.0
	- Stellar parameters	
	- Atomic data	1.2
	Gaia-ESO, Heiter et al. 2021	
	- Continuum & line masks:	alizeo 8.0 al
	patience!	
	-	0.2
•	Mo 6030 Å,	0.0 6029
	- no HFS, IS but not resolvable	
	- assume LTE	

	1	2
	–	. 2
	1	0
-	0	8
	0	.6
	0	.4
	0	.2
	0	.0
	1	.2
	1	.2
	1 1 0	.2
	1 1 0	.2 .0 .8
	1 1 0	.2 .0 .8
	1 1 0	.2 .0 .8
	1 1 0 0	.2 .0 .8 .6 .4

Reminder on how to read abundance plots

- Mg produced in SNe II Fe produced in SNe II and SNe Ia (white dwarf origin)
- Initial Mass Function (IMF) \bullet
- Star Formation Rate (SFR) •

$$[Fe/H] = \log_{10} \left(\frac{N_{Fe}}{N_{H}} \right)_{star} - \log_{10} \left(\frac{N_{Fe}}{N_{H}} \right)_{Sun}$$

The Mo abundances

Molybdenum in the Disk + Bulge

Forsberg et al. 2019, s-process

Thin: 191 Thick: 68 Bulge S/N > 20: 28 Bulge S/N \leq 20: 7 Thick running mean Thin running mean Bulge running mean -1.25-1.00-0.75-0.50-0.25 0.00 0.25 0.50 [₱₽/H]

Forsberg et al. 2019, r-process

- 35 proton rich isotopes from the p-process (Burbidge et al. 1957, Rauscher et al. 2013)
- Not necessarily proton capture...

H+He burning on mass accreting neutron stars (rp-process)

But why would we see that in the bulge...?

Galactic bulge

- (Holmbeck et al. 2020, r-process alliance)

Z06 in Mo and Eu

ZO6 in 14 elements from Jönsson series

- Grey: mean, min+max value of the bulge, excluding Z06
- Mo and Eu stand out, even when including the uncertainties

Combined data from Jönsson+ 2017, Lomaeva+ 2019, Forsberg+ 2019, Forsberg+ 2022

J13 star in 14 elements, Johnson et al. 2013

- Grey: mean, min+max value of the bulge, excluding J13
- Mo and Eu stand out

Data from Johnson+ 2013, Jönsson+ 2017, Lomaeva+ 2019, Forsberg+ 2019, Forsberg+ 2022

Bulge membership?

• Calculate spectrophotometric distances (following APOGEE, Majeski et al. 2017, Rojas-Arriagada et al. 2017a,b) -> by comparing to theoretical isochrones (PARSEC, Bressan et al. 2012, Marigo et al. 2017) to obtain the (probable) absolute magnitudes -> compare to the observed photometry to estimate line-of-sigh reddening and distances

J13-star	Z06-star
(-1.0, -8.4)	(5.2, -2.8)
274.438	272.10
-33.890	-25.812
11.686	12.255
11.034	11.395
10.955	11.130
11.8 ± 1.0	7.2 ± 0.3
0.734 ± 0.023	-0.304 ± 0.052
$.512 \pm 0.018$	-2.601 ± 0.036
-16	-36

Bulge membership

Bulge membership

- Orbitals using galpy (Bovy 2015) - Proper motions Gaia DR3, RV from spectroscopy - Galactic potential: disk + bar (MW2014 disk, Dehnen bar)
- Run for 10 billion years, also with the most extreme cases of uncertainty in distance, PM

Bulge membership

Concluding remarks

- We are still not sure how and where all elements are formed
- Studying a variety of elements are key when studying and trying to understand our Galaxy
- Measured Mo from high-resolution giant spectra in the Disk, for the first time in the Bulge
- Find a chemically-peculiar star in the Bulge, that could be a part of an old, classical bulge

Rebecca Forsberg Uppsala University – 27th April 2023

Thank you.

