Chemodynamics and Evolution of the Milky Way

Michael Hayden Sanjib Sharma Boquan Chen Purmortal Wang Joss Bland-Hawthorn GALAH Team APOGEE Team University of Sydney

The Milky Way: A Laboratory for Understanding Galaxy Formation

Image: Alejandra Recio-Blanco

- For distant galaxies we can only get gross properties as individual stars are difficult to resolve
- Milky Way stars are nearby: get phase space (x,v), [Fe/H], age, mass *distributions*
- With this we can test galaxy formation theories with higher detail and better constraints than unresolved populations
- Galactic Archaeology is undergoing a revolution: massive spectroscopic surveys (abundances)+Gaia (astrometry)
 → map the entire chemodynamic structure of the Galaxy

Overview

- Elemental Production Sites, Chemistry of the Solar Neighborhood
- How Stars Move About the Galaxy: Radial Mixing
- Mapping the Galaxy from the Bulge to the Edge of the Disk
- Chemical Evolution Modeling
- The Milky Way in Context: Simulations, Datacubes, GECKOS

Where Do the Elements Come From?

Alpha and Iron Peak

Simple Scenario: What Happens If Star Formation Is Rapid/Slow?

Simple Scenario: What Happens If Star Formation Is Rapid/Slow?

The Solar Neighborhood

Take stars within 100 pc of the Sun, what do we see?

Ages from Abundances

The Solar Neighborhood

Adibekyan+2012, Haywood+ 2013

The Solar Neighborhood

Adibekyan+2012, Haywood+ 2013

The Solar Neighborhood- Hmmm

Two-infall model: major accretion event resets chemical evolution Explains both the high and low alpha disk Potential issue: very specific age-metallicity relation, metal-rich stars can only be old!

Age-Metallicity Relation: Oops!

Age-Metallicity Relation: Oops!

Radial Mixing

Radial Mixing: Stars Move!!!

Blurring: stellar orbits heated with time, eccentricity +, angular momentum conserved (non-axisymmetric structures, GMC, satellites)

Migration: Angular momentum exchange with non-axisymmetric time dependent perturbations (*transient* spiral arms), eccentricity conserved Blurring

Churning

How Migration Works

Credit: Neige Frankel

Migration Efficiency

Credit: Neige Frankel

Large Scale Surveys

SDSS DR17

Several Ongoing Spectroscopic Surveys of the Entire Sky: APOGEE, GALAH, LAMOST Millions of Stellar Spectra, **Dozens of Abundances** Future: 4MOST, WEAVE, DESI, SDSS5: Nearly 100 million high quality stellar spectra!

Radial Mixing: Stars Move!

Schoenrich+Binney 2009

• Idea: Maybe stars move from their birth place!

Radial Mixing: Stars Move!

Schoenrich+Binney 2009

ISM at different radii in the disk have a set, steady evolution We mix stars after they are born Two sequences: one inner disk, one outer disk \rightarrow stars

born in different places

Different radii in the disk have their own evolution
Stars move around after they are born

Schoenrich+Binney 2009

Metallicity Distribution: Higher Order Moments

Hayden+ 2015

Positively Skewed MDFs?

0.4

0.2

O/Fe

Andrews+2016

0 10 20 P([O/Fe])

20

0.0

Toy Model: Migration Needed

Fundamental Relations for Velocity Dispersion

• $\sigma_v(\tau, L_z, \text{[Fe/H]}, |z|) = \sigma_{v0} f_\tau f_{Lz} f_{\text{[Fe/H]}} f_z$

- Dispersion depends on Age, Angular Momentum, [Fe/H], and |z|
- How to visualize this multivariable problem?
- We plot, dispersion of $v/(\sigma_{v0}f_{Lz}f_{[Fe/H]}f_z) \rightarrow f_r$

Divide out the dependence of other variables

- Different spectroscopic surveys agree.
- Different stellar types agree.
 - MSTO seismic
 - RG with C/N
 - Giants with asteroseismology
- Old and young all on same line: no separate thick disk

What We Want to Answer.

Boquan (Erwin) Chen (ANU)

arXiv:2204.11413

- Want to explain the detailed chemical abundances of the Galaxy
- How the abundances vary with position in the disk
- Identify Likely Formation
 Pathway for Thick/high-α disk
- Build upon pioneering work from Schoenrich & Binney 2009

- Multiple Radial Zones: Need to track abundances /w position!
- Two Phase ISM: Cold+Warm
- Gas: Accretion, cooling, radial flow \rightarrow try and maintain exponential gas disk
- Star Formation+Stellar Evolution
- Supernovae Yields+Delay Time Distributions
- AGB Yields
- Radial Mixing of Stars and Gas: Both blurring+migration
- 30 Myr Time Step: Maximum Age of SNII Progenitor
- Smooth Gas Accretion History: No Mergers!

Chen, Hayden+2022

Chen,Hayden+2022

Chen,Hayden+2022

Chen,Hayden+2022

SFR/SFH

The Model

- Solar neighborhood data in greyscale Strong radial gradient \rightarrow \bigcirc inner Galaxy metal rich, outer galaxy metal poor Rapid chemical enrichment \bigcirc early on, slow enrichment later
- Most high alpha stars born in inner Galaxy

The Model

Solar neighborhood data in greyscale Strong radial gradient \rightarrow \bigcirc inner Galaxy metal rich, outer galaxy metal poor Rapid chemical enrichment \bigcirc early on, slow enrichment later Evolution of α with time

matches data

Model: Chemical Map of the Disk

Chen, Hayden+2022

Model Parameters

.

Table 1. Parameters of the standard model.			0.4 -	Fiducial
Parameter	Meaning	Value	0.3 - E 0.2 -	11.2 Gyr
R_d	Scalelength of cold gas	3.5 kpc	W 0.1 -	9.8 Gyr
C	Star formation efficiency constant	2.2×10^{-10}	0.0 -	20 kpc 2 kpc
N	Power in star formation law	1.4	0.4	11.2 Gyr MIPT
$M_{0,cold}$	Initial cold gas mass	$7 imes 10^9 M_{\odot}$	0.3 -	9.8 Gyr
$M_{0,\text{warm}}$	Initial warm gas mass	$1 \times 10^9 M_{\odot}$	H 0.2 -	8.4 Gyr —
$\Delta M_{\rm warm}$	Early infall mass per step onto warm gas	$2.5 \times 10^8 M_{\odot}$	0.0 -	20 kpc 2 kpc
M_1	Short timescale infall mass	$1 \times 10^{10} M_{\odot}$	-0.1 -	
M_2	Long timescale infall mass	$1 imes 10^{11} M_{\odot}$	0.3 -	11.2 Gyr
b_1	Timescale for M_1	150 Myr	0.2 -	9.8 Gyr
b_2	Timescale for M_2	1.4 Gyr	0.0 -	and the second
$t_{\rm min,SNeIa}$	Minimum time delay before first SNe Ia	150 Myr	-0.1 -	20 kpc 2 kpc
$t_{\rm scale,SNeIa}$	Timescale for decay of SNe Ia	1.5 Gyr	0.4 -	11.2 Gyr
$t_{\rm cool}$	Cooling timescale of warm gas	1.2 Gyr	e.2 -	9.8 Gyr
$f_{\rm direct}$	Fraction of ejecta directly into cold gas	0.01	≥ 0.0 -	8.4 Gyr - Hittert
$f_{\rm eject}$	Fraction of ejecta lost	0.3-0.04	-0.1 -	20 kpc 2 kpc
$Z_{M_{\odot}}$	Metallicity of the Sun	0.0156	0.4	11.2 Gyr
Z_{IGM}	Metallicity of the IGM	$10^{-0.8} Z_{M_{\odot}}$	e.3 -	98.Gr
f _{IGM}	The fraction of gas directly deposited from IGM	0.25	Ž 0.1 -	8.4 Gyr
%SNeIa	Fraction of white dwarfs from stars within $(3.2, 8.5)M_{\odot}$ that turn into SNe Ia	0.05		20 kpc 2 kpc
%HNe	Fraction of CCSN that explode as hypernovae	0.5	0.4 -	U 2 Gyr
%MRSN	Fraction of CCSN that explode as magneto-rotational supernovae	0.0025	0.3 -	98 Gyr
v_0	Rotational velocity of the Milky Way from Sanders & Binney (2015)	220 km/s	-a0 ≥ 0.1 -	8.4 Gyr
σ_{L_0}	Churning amplitude from Sanders & Binney (2015)	$1150 \ \rm kpc \ \rm km/s$	0.0 -	20 kpc 2 kpc
t_{max}	Maximum age of the Milky Way	12 Gyr	-0.1 -	-2.0 -1.5 -1.0 -0.5 0.0 0.5

. ..

Chemical Evolution Summary

- Developed a detailed chemical evolution model that takes into account many physical processes including radial mixing
- First chemical evolution model that closely matches the entire chemical distribution of stars in the Galaxy
- Able to reproduce the high-α disk and bimodal distribution of stars in solar neighborhood with no mergers required!
- Implies that this might be natural evolution of disk galaxies, rather than rare event
- Lots more things to look at: s-process abundances, more gas processes, etc!

- MW is only a single galaxy: can't constrain all of galaxy evolution with one data point!
- Build data cubes of our chemical evolution model to directly compare to external observations
- GECKOS: large ESO Program to look at edge on galaxies, directly compare to MW+Apply Chemodynmical Models

How Common is the Milky Way?

The origin of diverse α -element abundances in galaxy discs

J. Ted Mackereth^{1*}, Robert A. Crain¹, Ricardo P. Schiavon¹, Joop Schaye², Tom Theuns³ and Matthieu Schaller³

¹Astrophysics Research Institute, Liverpool John Moores University, 146 Brownlow Hill, Liverpool L3 5RF, United Kingdom
 ²Leiden Observatory, Leiden University, PO Box 9513, NL-2300 RA Leiden, the Netherlands
 ³Institute for Computational Cosmology, Department of Physics, University of Durham, South Road, Durham DH1 3LE, UK

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT

Spectroscopic surveys of the Galaxy reveal that its disc stars exhibit a spread in $\left[\alpha/Fe\right]$ at fixed [Fe/H], manifest at some locations as a bimodality. The origin of these diverse, and possibly distinct, stellar populations in the Galactic disc is not well understood. We examine the Fe and α -element evolution of 133 Milky Way-like galaxies from the EAGLE simulation, to investigate the origin and diversity of their $\left[\alpha/\text{Fe}\right]$ -[Fe/H] distributions. We find that bimodal $\left[\alpha/\text{Fe}\right]$ distributions arise in galaxies whose gas accretion histories exhibit episodes of significant infall at both early and late times, with the former fostering more intense star formation than the latter. The shorter characteristic consumption timescale of gas accreted in the earlier episode suppresses its enrichment with iron synthesised by Type Ia SNe, resulting in the formation of a high- $\left[\alpha/\text{Fe}\right]$ sequence. We find that bimodality in $\left[\alpha/\text{Fe}\right]$ similar to that seen in the Galaxy is rare, appearing in approximately 5 percent of galaxies in our sample. We posit that this is a consequence of an early gas accretion episode requiring the mass accretion history of a galaxy's dark matter halo to exhibit a phase of atypically-rapid growth at early epochs. The scarcity of EAGLE galaxies exhibiting distinct sequences in the $\left[\alpha/\text{Fe}\right]$ -[Fe/H] plane may therefore indicate that the Milky Way's elemental abundance patterns, and its accretion history, are not representative of the broader population of $\sim L^{\star}$ disc galaxies.

For external galaxies... For MW datacubes... Integrated spectrum PPXF+MILES, etc Kinematics (v, v_sig, h3, h4) PPXF+MILES Chemical composition Instrument properties Integrated spectrum V [km s⁻¹] [arcsec] 10 -50 -100 MILES SSP -150 - 13 - 12 - 11 - 10 - 9 Age [Gyr] -200 -250 ଚ୍ଚି 20 Particles (mass, age, [Fe/H], [a/Fe], V_los) σ [km s⁻¹] - 225 - 200 - 175 - 150 - 125 - 100 - 75 <u>ज</u>्न 20 Spatial binning [M/H] 0.3 - 0.2 MW view externally y [arcsec] 0.1 0.10 0.0 - 0.05 -0.1 Distance, inclination 0.00 -0.05 0.30 -0.10 [Mg/Fe] 0.25 MW analytical model (~10e8 particles) 0.20 ୍ଷି 20 0.15 arcs 0.10 0.10 Galaxia 0.05 0.05 - 0.00 10 0.00 -0.05 100 120 Age, [Fe/H], $[\alpha/Fe]$, LOSVD x [arcsec] -0.10 Martig et al. 2021

distributions

The Milky Way in Context: Building an IFS Data Cube of the Galaxy

Purmortal (Zixian) Wang (zwan0382@uni.sydney.edu.au), Michael Hayden, Sanjib Sharma, Jesse van de Sande, Joss Bland-Hawthorn Sydney Institute for Astronomy, School of Physics, A28, The University of Sydney, NSW, 2006

6000 3500 4000 4500 5000 5500 6500 7000 7500 Wavelength (Å)

Figure 1: Top: Flux distributions of two generated Milky Way data cubes at wavelength $\lambda = 5500$ Å. The galaxy is firstly placed at 50Mpc from the observer, then rotated by different angles. No extinction/seeing is added on these data cubes. Bottom: Spectrum of one spatial pixel (marked on the top-right panel) generated by using MILES models.

Ingredients

- E-Galaxia (Sharma et al. in prep 2022)
- Milky Way model (Sharma et al. 2020)
- SSP spectra libraries (MILES, PEGASE-HR, etc.) .
- pPXF (Cappellari 2017) ٠
- Data-cube properties ٠
- Instrument properties

Applications

0.16

0.14

0.12

0.08

0.06

0.04

0.10 5

Direct chemo-dynamical structure comparison between external galaxies and the Milky Way on:

- Velocity dispersion profiles ٠
- Radial and vertical age gradients
- Mass fraction of the $[\alpha/Fe]$ -rich versus $[\alpha/Fe]$ poor populations

Velocities: Pretty Good!

SFR: Not So Good

The Milky Way

The Milky Way

Martig+ 2021

An ESO VLT/MUSE Large Program

Turning galaxy evolution on its side with deep observations of edge-on galaxies

What is GECKOS?

Generalising Edge-on galaxies and their Chemical bimodalities, Kinematics, and Outflows out to Solar environments

- 317 hours of VLT/MUSE in various seeing conditions
- 35 edge-on galaxies at D < 70 Mpc
- Better than 200pc spatial resolution out to solar environments
- S/N = 40 at surface brightness 23.5 mag/arcsec²

Who is GECKOS?

Team: Adriano Poci, Alberto Bolatto, Andrew Wetzel, Barbara Catinella, Barbara Ciraulo, Claudia Lagos, Emily Wisnioski, Eric Emsellem, Fabian Walter, Francesca Fragkoudi, Francesca Pinna, Glenn van de Ven, Ivan Minchev, Jesús Falcón-Barroso, Jo Ciuca, Joss Bland-Hawthorn, Kate Harborne, Ken Freeman, Ling Zhu, Luca Cortese, Ortwin Gerhard, Payel Das, Purmortal (Zixian) Wang, Richard McDermid, Ryan Leaman, Sanjib Sharma, Sarah Martel, Scott Croom, Sven Buder, Tobias Buck, and Trevor Mendel

Observe 35 edge-on galaxies to very high S/N out to large Re (~3Re)

NGC 5746

- 13 - 12 - 11

- 10

- 0.3

- 0.2

0.1

0.0

-0.

0.30

- 0.25 - 0.20

- 0.15

- 0.10

0.05

0.00

-0.25

0.50

1.00

-1.25

1.50

120

100

12

00

- Range of star formation rate+histories: What drives disk galaxy evolution?
- Measure stellar populations of disks, identify accreted structures, measure outflows
- Apply detailed chemical modeling from MW to these external systems

geckos

geckos

Conclusions

- Made the first complete chemical map of the Galaxy
 - Strong variation of abundances /w position
 - High-Alpha stars centrally concentrated, dominate in thick disk
 - Outer disk: flared young populations, similar metallicity to high alpha pops
- Radial mixing is important (and really annoying!)
- Developed the first chemical evolution model to reproduce nearly all observables (chemical maps, MDF skewness, etc)
 - \circ No Major Merger Needed \rightarrow bimodal chemical disks potentially common
 - Lots of Room to Explore: neutron capture abundances, galactic fountains, non-axis symmetric structure (bar, spiral arm) \rightarrow azimuthal variation
- Using the Milky Way as a Testbed for Galaxy Evolution:
 - Building MW Datacubes for a range of distances, inclinations, stellar libraries, instruments
 - GECKOS: ESO MUSE Program to Obtain High Quality Observations for Detailed Comparisons

What's Next: Simmering Phase

Conroy+22

Age-Metallicity-Abundance Relations

Blue: Metal-poor

Red: Metal-rich

All you need is age+metallicity to estimate an abundance

Implication: Galaxy has had almost no azimuthal metallicity variation for most of its history

Age-Metallicity-Abundance Relations

Age-Metallicity-Abundance Relations

Π

- Estimate abundance from age, [Fe/H]
- Compare estimated abundance to measured abundance, measure scatter
- Compare scatter to that of measurement uncertainties, determine intrinsic scatter: how well can we predict an element based on age, [Fe/H]? Low sigma \rightarrow better prediction

Age-Metallicity-Abundance Relations

Sharma+Hayden 2020

Turning This Around: Ages from Abundances

- We can estimate abundances to <0.05 dex just from age+[Fe/H] → We can estimate ages just from abundances + [Fe/H]
- Use XGBoost to estimate ages from 13 abundances in GALAH: [Fe/H], [Y/Fe], [Ba/Fe], [Mn/Fe], [O/Fe], [Cr/Fe], [Na/Fe], [Ca/Fe], [Ti/Fe], [Mg/Fe], [Si/Fe], [K/Fe], [Sc/Fe] with MSTO stars providing training set ages

Uncertainties in Ages from Abundances

Age Abundance Trends

Kinematic Studies of the Disk

Hayden+Sharma 2022

Kinematic Studies of the Disk

Hayden+Sharma 2022

Metallicity [Fe/H] and *height* |z|

$$f_{[Fe/H]} = 1 + d [Fe/H]$$
, $f_z = 1 + e |z|$

Linear functions

 σ_{v}

[Fe/H] or |z|

Chemical Evolution with Radial Mixing

- [Fe/H] $(R_{\rm b}, \tau)$
- $[\alpha/\text{Fe}](R_b, \tau)$

Sharma+Hayden 2020b

Birth configuration $p(R_b, \tau) = p(\tau) p(R_b | \tau)$ Star formation history: $p(\tau)$ Structure of disk: $Exp(-R_b/R_d)$

Birth configuration $p(R_b, \tau) = p(\tau) p(R_b | \tau)$ Star formation history: $p(\tau)$ Structure of disk: $Exp(-R_b/R_d)$

Present configuration $p(x, v | R_{b}, \tau)$ $p(z | \sigma_{vz})$, Vertical distribution p($R|L, \sigma_{vR}$) Radial distribution Ζ R

 $p(L | R_b, \tau)$ Radial Migration:Gaussian Diffusion Process, σ_{L0} = 1150 km/s kpc $\sigma_v(L, R_b, \tau)$ Velocity dispersion

Table 1. Parameters of the standard model.			0.4 -	Fiducial	[00]
Parameter	Meaning	Value	0.3 -		11.2 Gyr
R_d	Scalelength of cold gas	3.5 kpc	≥ 0.1 -	9.8 Gyr	9.8 Gyr
C	Star formation efficiency constant	2.2×10^{-10}	0.0 -	20 kpc 2 kpc	20 kpc 2 kpc
N	Power in star formation law	1.4	0.4	II.2 Gyr MRI	CSE
$M_{0,cold}$	Initial cold gas mass	$7 imes 10^9 M_{\odot}$	0.3 -	9.8 Gyr	
$M_{0,\rm warm}$	Initial warm gas mass	$1 imes 10^9 M_{\odot}$	H_0.2 − ₩ 0.1 −	8.4 Gyr	84 Gyr
$\Delta M_{\rm warm}$	Early infall mass per step onto warm gas	$2.5 imes 10^8 M_{\odot}$	0.0 -	20 km	20 kpc 2 kpc
M_1	Short timescale infall mass	$1 imes 10^{10} M_{\odot}$	-0.1 -		
M_2	Long timescale infall mass	$1 imes 10^{11} M_{\odot}$	0.3 -	11.2 GyrE+	11.2 Gyr
b_1	Timescale for M_1	150 Myr		9.8 Gyr	9.8 Gyr
b_2	Timescale for M_2	1.4 Gyr	0.0 -	and the	- All Barrow
$t_{\rm min,SNeIa}$	Minimum time delay before first SNe Ia	150 Myr	-0.1	20 kpc	20 kpc 2 kpc
$t_{\rm scale, SNeIa}$	Timescale for decay of SNe Ia	1.5 Gyr	0.4	11.2 Gyr	11.2 Gyr
$t_{\rm cool}$	Cooling timescale of warm gas	1.2 Gyr	0.2 -	9.8 Gyr	9.8 Gyr
$f_{ m direct}$	Fraction of ejecta directly into cold gas	0.01	≥ 0.1 - 0.0 -	84 Gyr - Child Hart Hart	and and the
f_{eject}	Fraction of ejecta lost	0.3-0.04	-0.1 -	20 kpc 2 kpc	20 kpc 2 kpc
$Z_{M_{\odot}}$	Metallicity of the Sun	0.0156	0.4	11.2 Gyr	11.2 Gyr
$Z_{\rm IGM}$	Metallicity of the IGM	$10^{-0.8} Z_{M_{\odot}}$	e.5 -	98 Gyr	9.8 Gyr
$f_{\rm IGM}$	The fraction of gas directly deposited from IGM	0.25	Ž 0.1 -	8.4 Gyr	×4 Gyr → UTH++++++
%SNeIa	Fraction of white dwarfs from stars within $(3.2, 8.5)M_{\odot}$ that turn into SNe Ia	0.05		20 kpc 2 kpc	20 kpc 2 kpc
%HNe	Fraction of CCSN that explode as hypernovae	0.5	0.4 -	II.2 Gyr DTD+	DTD-
%MRSN	Fraction of CCSN that explode as magneto-rotational supernovae	0.0025	0.3 - E 0.2 -	9.8 Gyr	11.2 Gyr
v_0	Rotational velocity of the Milky Way from Sanders & Binney (2015)	220 km/s	200 0.1 -	8.4 Gyr - Hitty Hitty	9.8 Gyr
σ_{L_0}	Churning amplitude from Sanders & Binney (2015)	$1150 \rm \ kpc \ km/s$	0.0 -	20 kpc 2 kpc	20 kpc 2 kpc
t_{max}	Maximum age of the Milky Way	12 Gyr	-0.1 -2.	0 -1.5 -1.0 -0.5 0.0 0.5	-2.0 -1.5 -1.0 -0.5 0.0 0.5
				[Fe/H]	[Fe/H]

Future Research: MW In Context

- MW is only a single galaxy: can't constrain all of galaxy evolution with one data point!
- Can compare detailed chemical evolution models to simulations \rightarrow identify MW analogues, look at range of formation pathways Goal: Use several suites of simulations (FIRE-LATTE, TNG50, EAGLE, Auriga, etc.). Determine which processes are critical to producing realistic chemical maps