UU Astronomy and Space Physics seminar 13th April, 2023

Early kilonova emission from neutron star mergers

A story of cosmíc treasure hunt

Smaranika Banerjee

• Banerjee, Tanaka, Kawaguchi, et al. 2020, ApJ, 901, 29

- Banerjee, Tanaka, Kato, et al. 2022, ApJ, 934, 117
- Banerjee, Tanaka, Kato, Gaigalas, 2023, Submitted to ApJ https://arxiv.org/abs/2304.05810

Cosmic treasure hunt

Chemical enrichment history

Neutron star merger & kilonova

Atomic opacity for kilonova

Kilonova modelling

Neutron star mergers

Sekiguchi et al. 2016

Neutron star mergers

Abundances

Lanthanide-free abundance => Distributed near pole/ isotropically Lanthanide-rich abundance => Distributed towards tidal direction

Kilonova

Radioactive decay of heavy elements => Thermal radiation => kilonova (~ days - weeks)

Li & Paczynski 1998; Kulkarni 2005; Metzger et al. 2010

Observations

O2: GW170817

e.g., Coulter et al 2017; Soares-Santos et al 2017; Arcavi et al 2017a; Troja et al 2017; Kilpatrick et al 2017; Smartt et al 2017; Drout et al 2017; Evans et al 2017; Abbott et al 2017d; Utsumi et al 2017; Covino et al 2017

Gravitational wave detected No electromagnetic counterpart

Coughlin et al 2019; Hosseinzadeh et al. 19; Lundquist et al.2019; Sasada et al. 2021

O4 (starts May, 2023)?

Kilonova AT2017gfo

Kilonova AT2017gfo

Kilonova AT2017gfo

<- early to late kilonova

-> Only source?

What do we need?

Realistic digite concentrated rly time
<= Detail@etail</p>

Opacity

Opacity

Neutron star merger & kilonova

Atomic opacity for kilonova

Kilonova modelling

Energy level

Opacity

Opacity

Neutron star merger & kilonova

Atomic opacity for kilonova

Kilonova modelling

Model

Bolometric light curve

Multi-color light curve

Lanthanide-rich kilonova (optical)

Bolometric light curve

Detectable ejecta structure signature in kilonova at first few (~ 4) hours

Bolometric light curve

Banerjee+ 2023, submitted

Detectable ejecta structure signature in kilonova at first few (~ 4) hours

Suggested gray opacities

Lanthanide-free Lanthanide fraction = 0.05 Full transfer Full transfer $\kappa_{gray} = 1.0 \text{ cm}^2 \text{ g}^{-1}$ $\kappa_{gray} = 5.0 \text{ cm}^2 \text{ g}^{-1}$ 10⁴³ $\kappa_{\rm gray} = 0.8 \ {\rm cm}^2 \ {\rm g}^{-1}$ 10⁴³ 10⁴² 10⁴² Luminosity (erg s⁻¹) Luminosity (erg s⁻¹) 10⁴¹ 10⁴¹ 10⁴⁰ 10⁴⁰ 10³⁹ 10³⁹ 10³⁸ 10³⁸ 10 0.1 10 0.1 1 1 Days after the merger Days after the merger Banerjee+ 2023, submitted Suggested grav opacities Electron fraction Models $Y_{
m e,out}$ $(\rm cm^2 \, g^{-1})$ $Y_{\rm e,ir}$ (v = 0.2c - 0.33c,(v = 0.05c - 0.2c, $M_{\rm ej,in} = 0.01 M_{\odot}$ $= 0.001 M_{\odot}$ $M_{\rm el}$ Model 1 0.10 - 0.202.0 - 10.0Model 2 0.20 - 0.301.0 - 5.0Model 3 0.30 - 0.400.8Model 4 0.30 - 0.400.10 - 0.205.0 - 20.0Model 5 3.0 - 10.00.30 - 0.400.20 - 0.30Model 6 0.30 - 0.400.30 - 0.400.8 - 1.0

Suggested gray opacities

Multi-color light curves cannot be reproduced

Comparison with observations (LIGO O4, May 2023 ~)

