Recent results from Belle II

Martina Laurenza (she/her)

Uppsala Universitet

🗹 martina.laurenza@physics.uu.se

Annual Swedish Nuclear Physicists' meeting and SFAIR meeting 2023

Uppsala, 23-25 October 2023

Recent results from Belle II

outline

- introduction
- the Belle II experiment
- highlights from BelleII
- charm lifetimes
- T physics
- B rare decays
- dark sector
- summary

Martina Laurenza (she/her)

Uppsala Universitet

🗹 martina.laurenza@physics.uu.se

Annual Swedish Nuclear Physicists' meeting and SFAIR meeting 2023

Uppsala, 23-25 October 2023

Introduction

Standard Model: a successful theory

- the **Standard Model (SM)** is the best tested theory of nature at fundamental level describing particles ad their interactions:
 - the elementary fermions and bosons have been observed and their properties measured
 - the quark model predicts the vast majority of observed bound states, mesons and baryons

- interactions between mesons, baryons and lepton are predicted with a precision of O (1%)
- hundreds of observables (branching ratios, CP violation parameters, asymmetries, ...) are measured to be consistent with the theory predictions

Standard Model: open questions

- there are still open questions coming from observations unexplained by the SM
 - no explanation of the observed matter-antimatter asymmetry
 - no dark matter candidate or dark energy explanation
 - no explanation of masses hierarchy, ...
- and tensions between measurements and SM predictions that need to be interpreted (see (g-2)_µ for example)

$$Dark matter$$

$$\int_{a=1}^{a=1} F^{2} + i \bar{\Psi} p \Psi + \bar{\Psi} \phi \Psi + h.c. + |D\phi|^{2} - V(\phi)$$

$$G_{\mu\nu} + g_{\mu\nu} \Lambda = T_{\mu\nu} \qquad \text{New}^{+1} rino oscillation$$

LIPPSAL A

Moving beyond the Standard Model

- at energy frontier experiments are able to discover new particles
 → mass reach for new particle O (1 TeV/c²)
- at rare/precision frontier, observable signatures of new particles or processes can be obtained through measurements of flavor physics reactions at lower energies
 - → an observed discrepancy can be interpreted in terms of (New Physics) NP models
 - unprecedented sensitivity to the effect of NP
 - probes NP mass scale higher than the one accessed at the energy frontier

B-factories: first generation

Dedicated experiment at e⁺e⁻asymmetric-energy colliders for the production of a BB pairs:

 \rightarrow main process:

@KEKB collider (KEK, Japan)

@PEP II collider (SLAC, California)

→ Belle and BaBar have collected together 1.5 ab⁻¹
 → the majority of existing measurements are limited by statistical uncertainties

The Belle II experiment

SuperKEKB: a second generation B-factory

• target instantaneous luminosity is 6x10³⁵ cm⁻²s⁻¹ (x30 KEKB/Belle)

UPPSALA

SuperKEKB: a second generation B-factory

SuperKEKB: a second generation B-factory

• target instantaneous luminosity is 6x10³⁵ cm⁻²s⁻¹ (x30 KEKB/Belle)

Belle II: the detector

- efficient reconstruction of neutrals (γ , π^0 , η , η' ...)
- high trigger efficiency (including some specific trigger for low-multiplicity events)

SFS-KF and SFAIR meeting - Recent results from Belle II, M. Laurenza

Belle II: the collaboration

27 countries, 123 institutions, >1000 members

Belle II: the collaboration

Belle II: the physics program

UPPSALA

UNIVERSITET

Belle II Physics Book Snowmass White Paper

SFS-KF and SFAIR meeting - Recent results from Belle II, M. Laurenza

Highlights from Belle II

Belle II: the physics program in this talk

Belle II Physics Book Snowmass White Paper

SFS-KF and SFAIR meeting - Recent results from Belle II, M. Laurenza

UPPSALA

Charm-physics charm lifetimes

- lifetimes measurement test non-pertutbative QCD and provide guidance to describe strong interactions
 - Heavy Quark Expansion (HQE) used to determine heavy-quark hadron lifetimes as expansion in 1/m_q but the charm mass is not so heavy
 → the spectator quark contribution can not be neglected
- HQE predicted hierarchy of hadron lifetimes

```
\tau(\Xi_c^{\phantom{+}+}) > \tau(\Lambda_c^{\phantom{+}+}) > \tau(\Xi_c^{\phantom{-}0}) > \tau(\Omega_c^{\phantom{-}0})
```


- lifetimes measurement test non-pertutbative QCD and provide guidance to describe strong interactions
 - Heavy Quark Expansion (HQE) used to determine heavy-quark hadron lifetimes as expansion in 1/m_q but the charm mass is not so heavy
 → the spectator quark contribution can not be neglected
- HQE predicted hierarchy of hadron lifetimes

- lifetimes measurement test non-pertutbative QCD and provide guidance to describe strong interactions
 - Heavy Quark Expansion (HQE) used to determine heavy-quark hadron lifetimes as expansion in 1/m_q but the charm mass is not so heavy
 → the spectator quark contribution can not be neglected
- HQE predicted hierarchy of hadron lifetimes

Belle II confirmed the new picture: $\rightarrow \Lambda_c$ and Ω_c lifetime measurement (200 fb⁻¹) $\rightarrow D^0$ and D⁺ lifetime measurement (72 fb⁻¹)

- lifetimes measurement test non-pertutbative QCD and provide guidance to describe strong interactions
 - Heavy Quark Expansion (HQE) used to determine heavy-quark hadron lifetimes as expansion in 1/m_q but the charm mass is not so heavy
 → the spectator quark contribution can not be neglected
- HQE predicted hierarchy of hadron lifetimes

Belle II confirmed the new picture: → Λ_c and Ω_c lifetime measurement (200 fb⁻¹) → D⁰ and D⁺ lifetime measurement (72 fb⁻¹)

world's best!

Charm lifetimes: D⁰ and D⁺

Measurement of the D⁰ and D⁺ lifetimes in D^{*+} \rightarrow D⁰(\rightarrow K⁻ π^+) π^+ and D^{*+} \rightarrow D⁺(\rightarrow K⁻ $\pi^+\pi^+$) π^0

- **D**^o and **D**⁺ are produced with a displaced decay point due to the experiment boost
- decay time measured from the displacement projected into the direction of the momentum as:

 $t = m_D \vec{L} \cdot \vec{p} / \left| \vec{p}^2 \right|$

Charm lifetimes: D⁰ and D⁺

Measurement of the D⁰ and D⁺ lifetimes in D^{*+} \rightarrow D⁰(\rightarrow K⁻ π^+) π^+ and D^{*+} \rightarrow D⁺(\rightarrow K⁻ $\pi^+\pi^+$) π^0

- **D**⁰ and **D**⁺ are produced with a displaced decay point due to the experiment boost
- decay time measured from the displacement projected into the direction of the momentum as:

Charm lifetimes: D⁰ and D⁺

Measurement of the D⁰ and D⁺ lifetimes in D^{*+} \rightarrow D⁰(\rightarrow K⁻ π^+) π^+ and D^{*+} \rightarrow D⁺(\rightarrow K⁻ $\pi^+\pi^+$) π^0

- D^o and D⁺ are produced with a displaced decay point due to the experiment boost
- decay time measured from the displacement projected into the direction of the momentum as:

 lifetimes measured using a fit to the decay-time distributions of the reconstructed decay candidates

Charm lifetimes: results

 world's most precise measurements of the D⁰ and D⁺ (72 fb⁻¹) lifetimes

Charm lifetimes: results

- world's most precise measurements of the D^o and D⁺ (72 fb⁻¹) lifetimes
- world's most precise measurement of the Λ_c+ lifetime

Charm lifetimes: results

- world's most precise measurements of the D^o and D⁺ (72 fb⁻¹) lifetimes
- $^{\circ}\,$ world's most precise measurement of the Λ_{c}^{+} lifetime
- lifetimes consistent with world averages (D⁰, D⁺ and Λ_c⁺) and with LHCb value (Ω_c⁰)
 - → first lifetime measurements at B-factories experiments
 - → few per-mill accuracy established the excellent performance of our detector

τ-physics <u>τ mass measurement</u>

The τ -lepton mass m_{τ} is a fundamental parameter in the Standard Model:

- a very precise determination has important consequences:
 - tests for lepton-flavor universality between τ and lighter leptons (τ-mass enters with the 5th power)
 - predictions of leptonic and hadronic branching fractions of the τ
 - determination of the strong-interaction coupling a_s at the τ -mass scale
- \circ τ-mass known with ~10³ worse precision than the muon mass

Experiment	$m_{\tau} ({\rm MeV}/c^2)$	
BES	$1776.96^{+0.18}_{-0.21}{}^{+0.25}_{-0.17}$	
KEDR	$1776.80^{+0.25}_{-0.23}\pm0.15$	
BES III	$1776.91 \pm 0.12 \substack{+0.10 \\ -0.13}$	
Belle BABAR	$\begin{array}{c} 1776.61 \pm 0.13 \pm 0.35 \\ 1776.68 \pm 0.12 \pm 0.41 \end{array}$	

The τ -lepton mass m_{τ} is a fundamental parameter in the Standard Model:

- a very precise determination has important consequences:
 - tests for lepton-flavor universality between τ and lighter leptons (τ-mass enters with the 5th power)
 - predictions of leptonic and hadronic branching fractions of the τ
 - determination of the strong-interaction coupling a_s at the τ -mass scale
- \circ τ-mass known with ~10³ worse precision than the muon mass

UPPSALA

The τ -lepton mass m_{τ} is a fundamental parameter in the Standard Model:

- a very precise determination has important consequences:
 - tests for lepton-flavor universality between τ and lighter leptons (τ-mass enters with the 5th power)
 - predictions of leptonic and hadronic branching fractions of the τ
 - determination of the strong-interaction coupling a_s at the τ -mass scale
- $^{\circ}$ τ-mass known with ~10³ worse precision than the muon mass

Experiment	$m_{\tau} \; ({\rm MeV}/c^2)$	-
BES	$1776.96^{+0.18}_{-0.21}{}^{+0.25}_{-0.17}$	limited by systematic uncertainties
KEDR	$1776.80^{+0.25}_{-0.23}\pm0.15$	
BES III	$1776.91 \pm 0.12^{+0.10}_{-0.13}$	
Belle	$1776.61 \pm 0.13 \pm 0.35$	
BABAR	$- 1776.68 \pm 0.12 \pm 0.41$	_

τ mass measurement: analysis strategy

• reconstruct $e^+e^- \rightarrow \tau_{tag}\tau_{sig}$ events where $\tau_{tag} \rightarrow \ell v_\ell v_\tau / \pi(\pi^0) v_\tau$ and $\tau_{sig} \rightarrow 3\pi v_\tau$ as four tracks and no additional high energy photons in the event

τ mass measurement: analysis strategy

- reconstruct $e^+e^- \rightarrow \tau_{tag}\tau_{sig}$ events where $\tau_{tag} \rightarrow \ell v_\ell v_t / \pi(\pi^0) v_\tau$ and $\tau_{sig} \rightarrow 3\pi v_\tau$ as four tracks and no additional high energy photons in the event
- access m_τ with pseudo-mass technique $M_{min}: \sqrt{M_{3\pi}^2 + 2(\sqrt{s}/2 E_{3\pi}^*)(E_{3\pi}^* P_{3\pi}^*)} \le M_\tau$
- fit to the end-point with an empirical function, smeared edge due to detector **resolution effects** and larger tails because of **ISR**

UNIVERSITET

<u> Phys. Rev. D 108, 032006</u>

SFS-KF and SFAIR meeting - Recent results from Belle II, M. Laurenza

World's most precise measurement: $m_{\tau} = 1777.09 \pm 0.08_{stat} \pm 0.11_{syst} \text{ MeV/}c^2$

→ <u>Proof of the Belle II high precision capability</u>

UNIVERSITET

SFS-KF and SFAIR meeting - Recent results from Belle II, M. Laurenza

Rare_B decays B→Kvv evidence
$B^+ \rightarrow K^+ v \overline{v}$: motivation

 $B^+ \rightarrow K^+ v v$ is a FCNC decay suppressed in the Standard Model, only occurring at higher orders in SM perturbation-theory through weak-interaction amplitudes with the exchange of at least two gauge bosons.

• SM branching fraction is predicted to be:

 $B(B^+ \rightarrow K^+ \nu \overline{\nu}) = (5.58 \pm 0.37) \times 10^{-6}$ \rightarrow can be modified by BSM contributions

- no signal found up to now, experimental 90% CL upper limit set to 1.5 x 10⁻⁵
- experimentally challenging because of lack of kinematic constraints for background discrimination
- previous measurements relied on *exclusive reconstruction* of the accompanying tag B in hadronic or semileptonic modes
 - → Belle II uses a new approach with the *inclusive reconstruction* + conventional hadronic B tag method as auxiliary measurement

UPPSALA

$B^+ \rightarrow K^+ v \overline{v}$: analysis strategy

 signal candidate: identified charge kaon that gives the minimal mass of the neutrino pair q²_{rec} (computed as K⁺ recoil)

- use multiple control channels to validate analysis performance
- background mainly from B decays, with $B^+ \rightarrow K^+K^0\overline{K}^0$, $B^+ \rightarrow K^+nn$, $B^+ \rightarrow X_c(\rightarrow K_L^0 + X)$ and pion mis-identification being problematic

$B^+ \rightarrow K^+ v \overline{v}$: results

• signal extracted from binned maximum likelihood fit to q² and classifier output

SFS-KF and SFAIR meeting - Recent results from Belle II, M. Laurenza

UPPSALA

Dark Sector Dark Z' analyses

Light Dark Matter at B-factories

Dark Sector Candidates, Anomalies, and Search Techniques · Dark

- Dark Matter is one of the most compelling reasons for New Physics
- B-factories at e⁺e⁻ collider can access the mass range favored by light dark sector
 - → possible sub-GeV scenario: DM weakly coupled to SM through a light mediator X:
 - Vector portal (Dark Photons, Z' bosons)
 - Pseudo-scalar portal (ALPs)
 - Scalar portal (Dark higgs/Scalars)
 - Neutrino portal (Sterile Neutrinos)

Light Dark Matter at B-factories

- Dark Sector Candidates, Anomalies, and Search Techniques ev fev pev nev μev mev ev kev Mev Gev Tev Pev 30M₀ Compelling reasons for New Physics
 - B-factories at e⁺e⁻ collider can access the mass range favored by light dark sector
 - → possible sub-GeV scenario: DM weakly coupled to SM through a light mediator X:
 - Vector portal (Dark Photons, Z' bosons)
 - Pseudo-scalar portal (ALPs)
 - Scalar portal (Dark higgs/Scalars)
 - Neutrino portal (Sterile Neutrinos)

The $L_{\mu} - L_{\tau} \text{ model}^{[1], [2]}$

[1] B.Shuve and I.Yavin (2014) Phys. Rev. D 89, 113004 [2] Altmannshofer et al JHEP 1612 (2016) 106

- new gauge boson Z' coupling only to the 2nd and 3rd generation of leptons (L_μ-L_τ) may explain:
 - long-standing $(g-2)_{\mu}$ anomaly
 - dark matter abundance

• In Belle II we search for the processes:

Search for a $\mu\mu$ resonance in ee $\rightarrow \mu\mu\mu\mu$

[3] P. Harris et al., arXiv:2207.08990 [4] R. Capdevilla et al. ,J. High Energy Phys. 04 (2022) 129

- Search for the process $e^+e^- \rightarrow \mu^+\mu^-X$, with $X \rightarrow \mu^+\mu^-(X = Z', S)$
 - →look for a peak in the opposite charge di-muon mass distribution in e⁺e⁻ → µ⁺µ⁻µ⁺µ⁻ events
- (L_µ- L_z) model used as benchmark and then performances are checked for the scalar case
- dominant background: SM e⁺e⁻ → µ⁺µ⁻µ⁺µ⁻ → suppression achieved by exploiting the features of kinematic distributions in signal events (presence of a resonance)

UNIVERSITET

S = muonphilic dark scalar, see [3] and [4]

Search for a $\mu\mu$ resonance in ee $\rightarrow \mu\mu\mu\mu$: results

no significant excess observed in 178 fb⁻¹

- \rightarrow 90% CL upper limits on the process cross-section $\sigma(e^+e^- \rightarrow X \mu^+\mu^-) \times B(X \rightarrow \mu^+\mu^-)$
- → cross section limits are translated into upper limits on the g' coupling constant for the L₁ L₁ model and on the g_s coupling constant for the muonphilic dark scalar S

SFS-KF and SFAIR meeting - Recent results from Belle II, M. Laurenza

UPPSALA

Summary

- Belle II is now approaching an integrated luminosity which is directly competitive with the previous generation of B factories
- improvements in detector, trigger, and analysis strategies have enabled precision measurements and new physics with early Belle II data
- very active ongoing program of research with **many new results across a very broad range of physics topics**
- data collection and physics program is just beginning: stay tuned!

LIPPSAL A

UNIVERSITET

Thank you!

Backup

τ mass measurement: precision challenge

• excellent control of the systematics uncertainties thanks to precise understanding of beam energies and tracking:

$$M_{\min}: \sqrt{M_{3\pi}^2 + 2(\sqrt{s/2} - E_{3\pi}^*)(E_{3\pi}^* - P_{3\pi}^*)} \le M_{\tau}$$

Source	Uncertainty (MeV/c^2)
Knowledge of the colliding beams:	
Beam-energy correction	0.07—
Boost vector	< 0.01
Reconstruction of charged particles:	
Charged-particle momentum correction	0.06
Detector misalignment	0.03
Fit model:	
Estimator bias	0.03
Choice of the fit function	0.02
Mass dependence of the bias	< 0.01
Imperfections of the simulation:	
Detector material density	0.03
Modeling of ISR, FSR and τ decay	0.02
Neutral particle reconstruction efficiency	≤ 0.01
Momentum resolution	< 0.01
Tracking efficiency correction	< 0.01
Trigger efficiency	< 0.01
Background processes	< 0.01
	0.11

Beam energy calibration with B-meson hadronic decays method and Y(4S) lineshape measurement to get \sqrt{s}

Momentum scale factor cures the bias due to imperfect B-field: extract corrections dependent on $\cos\theta$ by comparing D⁰ \rightarrow K π mass peak w.r.t. PDF mass

-0.8

-0.6 -0.4 -0.2

0 0.2 0.4 0.6

cos_θ,

Search for an invisible Z'

- Look for a narrow peak in the recoil mass against a µ+µ⁻ pair in events where nothing else is detected
- odominant background radiative QED processes:
 1)e⁺e⁻→ e⁺e⁻ μ⁺μ⁻
 2)e⁺e⁻→ τ⁺ τ(γ) (especially with both τ → μ)
 3)e⁺e⁻→ μ⁺μ⁻(γ)
- Final State Radiation properties of the emitted Z' fed in a neural network trained for all Z' masses simultaneously

- No excess found in 79.7 fb⁻¹
 → 90% CL upper limits on σ(e⁺e⁻→μ⁺μ⁻Z', Z'→ inv.) and on g'
 - → (g-2)_µ favored region excluded for 0.8 < M(Z')< 5 GeV/c²

UPPSALA

- **Dark Matter** is one of the most compelling reasons for **New Physics**
- B-factories at e⁺e⁻ collider can access the mass range favored by light dark sector
 - → Possible sub-GeV scenario: DM weakly coupled to SM through a light mediator X:

Sterile Neutrinos

UPPSALA

Dark Sector @ Belle II

- Signature-based
- Advantages from the low particle multiplicty at lepton colliders + hermetic detector:
 - → Belle II at SuperKEKB asymmetric e⁺e⁻ collider
 - running at 10.58 GeV, well-known initial condition
 - efficient reconstruction of **neutrals**
 - specific low-multiplicity triggers (not present at Belle)
 - excellent particle identification system

Unprecedented luminosity 4.7 x 10³⁴ cm⁻² s⁻¹

• 424 fb⁻¹ collected to date

Recent Dark Sector results

Search for a long-lived (pseudo-)scalar particle in $b \rightarrow s$

- Search for **dark scalar** particles S from B decays in **rare b→s transitions**
 - S could mix with SM Higgs with mixing angle θ_s (naturally long-lived for $\theta_s \ll 1$)
 - M_s < M_B, decays of S into dark matter particles must be kinematically forbidden to provide the correct relic density
- Look for S decays into SM final states in **8 exclusive channels**:

Search for a long-lived (pseudo-)scalar particle in $b \rightarrow s$

EPS-HEP 2023 – Recent Dark Sector results at Belle II, M. Laurenza

[1] B.Shuve and I.Yavin (2014) Phys. Rev. D 89, 113004; Altmannshofer et al JHEP 1612 (2016) 106

Search for an invisible Z'

- New gauge boson Z' coupling only to the 2nd and 3rd generation of leptons (L_µ-L_τ)^[1] may explain:
 - long-standing (g-2)_µ anomaly
 - dark matter abundance

Search for the process: e⁺e⁻→ µ⁺µ⁻Z'
 → Two possible interpretation:

1) Vanilla, BF(Z' \rightarrow v \overline{v}) ~ 33-100% 2) Full invisible, BF(Z' \rightarrow x \overline{x}) ~ 100%

Search for an invisible Z'

- Look for a narrow peak in the recoil mass against a μ⁺μ⁻ pair in events where nothing else is detected
- Dominant background radiative QED processes:

```
1) e^+e^- \rightarrow e^+e^- \mu^+\mu^-

2) e^+e^- \rightarrow \tau^+ \tau^-(\gamma) (especially with both \tau \rightarrow \mu)

3) e^+e^- \rightarrow \mu^+\mu^-(\gamma)
```

• Final State Radiation properties of the emitted Z' fed in a neural network trained for all Z' masses simultaneously

- No excess found in 79.7 fb⁻¹
 - → 90% CL upper limits on **σ(e⁺e⁻→μ⁺μ⁻Z', Z'→ inv.)** and on g'
 - \rightarrow (g-2)_µ favored region excluded for 0.8 < M(Z')< 5 GeV/c²

UPPSALA

Search for a $\tau\tau$ resonance in ee $\rightarrow\mu\mu\tau\tau$

- Search for a di-tau resonance in e⁺e⁻→ μ⁺μ⁻τ⁺τ⁻ as a peak in the recoil against two muons
- Reconstruct τ decays to one-charged particle (+nh⁰)
 - → select **four-track events** with at least two tracks identified as muons
 - → M(4track) < 9.5 GeV/c² to suppress the four-lepton backgrounds that peak at the c.m. energy
- Background suppression exploits features of kinematic variables in the signal (X arising from a final state radiation, system recoiling against the 2 muons is a tau pair)

Search for a $\tau\tau$ resonance in ee $\rightarrow \mu\mu\tau\tau$

 [2] B. Batell, N. Lange, D. McKeen, M. Pospelov, and A. Ritz, Phys. Rev. D 95, 075003 (2017)
 [3] M. Bauer, M. Neubert, and A. Thamm, J. High Energy Phys. 2017, 44 (2017); M. Bauer, M. Neubert, S. Renner, M. Schnubel, and A. Thamm, J. High Energy Phys. 2022, 1 (2022)
 [4] W. Altmannshofer et. al. JHEP 12 (2016) 106

UNIVERSITET

Accepted by PRL: arXiv:2306.12294

- No significant excess observed in 62.8 fb⁻¹

 → 90% CL upper limits on the process cross-section
 σ(e⁺e⁻ → (X → τ⁺τ⁻) μ⁺μ⁻) = σ(e⁺e⁻ → X μ⁺μ⁻)B(X → τ⁺τ⁻), with X = S, ALP, Z'
- Exclusion limits on the couplings for three different models (leptophilic scalar S^[2], ALP^[3] and Z'^[4]) are derived:

Search for a dark leptophilic scalar in τ decays at Belle

- $\circ~$ Search for a narrow peak in m_{μ} distribution
- Mass range probed in this analysis: 40 MeV < m(Φ_i) < 6.5 GeV
 - $\Phi_{\mu} \rightarrow e^+e^-$ for m(Φ_{μ}) < 2m(μ) \rightarrow low mass region
 - $\Phi_{l} \rightarrow \mu^{+}\mu^{-}$ for m(Φ_{l}) > 2m(μ) \rightarrow high mass region

• Strategy:

- $\rightarrow e^+e^- \rightarrow \tau^+\tau^- \Phi_l$ require 1-prong decay \rightarrow 4 tracks with 0 net charge
- Background: e⁺e⁻ → τ⁺τ⁻, e⁺e⁻/μ⁺μ⁻, qq, BB
 → Define five BDT score to suppress backgrounds
- Maximum Likelihood fit to m_u distribution
 → Evaluate sensitivities to each mass point

Search for a dark leptophilic scalar in τ decays at Belle

• No significant excess observed in 626 fb⁻¹ in all mass region

• 90 % CL UL on ξ vs m(Φ_{l})

- → Comparable or more stringent limits than BaBar (Phys. Rev. Lett. 125, 181801)
- → Exclude a wide range of parameter space of the model favored by $(g-2)_{\mu}$

Submitted to PRL: arXiv:2207.07476

UPPSALA

UNIVERSITET

w

Search for a $\mu\mu$ resonance in ee $\rightarrow \mu\mu\mu\mu$

- Search for the process e⁺e⁻ → µ⁺µ⁻X, with X → µ⁺µ⁻(X = Z', S)
 → Look for a peak in the opposite charge di-muon mass distribution in e⁺e⁻ → µ⁺µ⁻µ⁺µ⁻ events
- (L_µ-L_τ) model used as benchmark and then performances are checked for the scalar case
- Events selected have **4 charged particles**
 - At least three identified as muons
 - M(4-track) ~ \sqrt{s}/c^2
 - No extra energy
- Dominant background: SM $e^+e^- \rightarrow \mu^+\mu^-\mu^+\mu^-$
 - Suppression achieved by exploiting the features of kinematic distributions in signal events
 (presence of a resonance in both candidate and recoil muon pairs)

UPPSALA

[5] P. Harris, P. Schuster, and J. Zupan, arXiv:2207.08990 [hep-ph]; R. Capdevilla, D. Curtin, Y. Kahn, and G. Krnjaic, J. High Energy Phys. 04 (2022) 129

Search for a $\mu\mu$ resonance in ee $\rightarrow \mu\mu\mu\mu$

• No significant excess observed in 178 fb⁻¹

- \rightarrow 90% CL upper limits on the process cross-section $\sigma(e^+e^- \rightarrow X \mu^+\mu^-) \times B(X \rightarrow \mu^+\mu^-)$, with X = S, Z'
- \rightarrow Cross section limits are translated into upper limits on the g' coupling constant for the L_µ L_τ

model and on the g_s coupling constant for the muonphilic dark scalar S^[5]

EPS-HEP 2023 – Recent Dark Sector results at Belle II, M. Laurenza

Nel

Conclusion

- Belle II/SuperKEKB is a unique environment to search for light dark matter or mediators
- **Excellent sensitivity** for dark sector searches
- World's leading results are obtained with a subset of the full available data
- 424 fb⁻¹ recorded to date, more results with higher statistics and improved analyses will be produced

UPPSALA

UNIVERSITET

Thank you!

Backup

Search for a long-lived (pseudo-)scalar particle in $b \rightarrow s$

- Search for **dark scalar** particles S from B decays in **rare b→s transitions**
 - S could mix with SM Higgs with mixing angle θ_s (naturally long-lived for $\theta_s \ll 1$)
 - M_s < M_B, decays of S into dark matter particles must be kinematically forbidden to provide the correct relic density
- Look for S decays into SM final states in **8 exclusive channels**:

Search for a long-lived (pseudo-)scalar particle in $b \rightarrow s$

EPS-HEP 2023 – Recent Dark Sector results at Belle II, M. Laurenza

Search for a $\tau\tau$ resonance in ee $\rightarrow\mu\mu\tau\tau$

- Search for a di-tau resonance in e⁺e⁻→ μ⁺μ⁻τ⁺τ⁻ as a peak in the recoil against two muons
- Reconstruct τ decays to one-charged particle (+nh⁰)
 - → select **four-track events** with at least two tracks identified as muons
 - → M(4track) < 9.5 GeV/c² to suppress the four-lepton backgrounds that peak at the c.m. energy
- Background suppression exploits features of kinematic variables in the signal (X arising from a final state radiation, system recoiling against the 2 muons is a tau pair)

Search for a $\tau\tau$ resonance in ee $\rightarrow \mu\mu\tau\tau$

 [2] B. Batell, N. Lange, D. McKeen, M. Pospelov, and A. Ritz, Phys. Rev. D 95, 075003 (2017)
 [3] M. Bauer, M. Neubert, and A. Thamm, J. High Energy Phys. 2017, 44 (2017); M. Bauer, M. Neubert, S. Renner, M. Schnubel, and A. Thamm, J. High Energy Phys. 2022, 1 (2022)
 [4] W. Altmannshofer et. al. JHEP 12 (2016) 106

UNIVERSITET

Accepted by PRL: arXiv:2306.12294

- No significant excess observed in 62.8 fb⁻¹

 → 90% CL upper limits on the process cross-section
 σ(e⁺e⁻ → (X → τ⁺τ⁻) μ⁺μ⁻) = σ(e⁺e⁻ → X μ⁺μ⁻)B(X → τ⁺τ⁻), with X = S, ALP, Z'
- Exclusion limits on the couplings for three different models (leptophilic scalar S^[2], ALP^[3] and Z'^[4]) are derived:

EPS-HEP 2023 – Recent Dark Sector results at Belle II, M. Laurenza

Light Dark Matter possible signatures

- Once produced, the mediator can have three different types of decays:
 - 1. Invisible decays
 - 2. Leptonic decays
 - 3. Hadronic decays

Search for a $\mu\mu$ resonance in ee $\rightarrow \mu\mu\mu\mu$: J/ Ψ

Search for a $\mu\mu$ resonance in ee $\rightarrow \mu\mu\mu\mu$

Search for a $\mu\mu$ resonance in ee $\rightarrow \mu\mu\mu\mu$: muonphilic dark-scalar

We extended the Z' search to the case of a muophilic dark scalar, S

- Scalar particle coupling through Yukawa-like interaction, only
- Mainly proposed as a way to solve the muon (g-2)_u anomaly

If m_s > 2m_µ the only tree-level decay channel is S → µµ
 (S → vv, γγ also are possible at one loop level, but highly suppressed)

We reinterpreted our result in terms of the dark scalar *S*, keeping all the steps of the analysis <u>completely</u> <u>unaltered</u>

72

- 1) P. Harris, P. Schuster, J.Zupan, Snowmass White Paper: New flavors and rich structures in dark sector
- 2) S. Gori, M. Williams, et al., Dark Sector Physics at High-Intensity Experiments
- 3) D. Forbes, C. HerwigNew Searches for Muonphilic Particles at Proton Beam Dump Spectrometers
- -4) R. Capdevilla, D. Curtin et al., Systematically testing singlet models for $(g 2)\mu$

EPS-HEP 2023 – Recent Dark Sector results at Belle II, M. Laurenza

UPPSALA

Search for a $\mu\mu$ resonance in ee $\rightarrow \mu\mu\mu\mu$: muonphilic dark-scalar

Difference: Z' is softly produced at low masses, S have a hard momentum spectrum also in the low mass region.

- In $e^+e^- \rightarrow \mu^+\mu^- X$ interactions X can be:
 - ➤ A vector: production occurs through a s-wave process
 - ➤ A scalar: production occurs through a p-wave process

At low S masses the p-wave suppression makes the scalar process grow slowly with the energy, while there is no suppression for vector processes.

UPPSALA

Search for a µµ resonance in ee → µµµµ: muonphilic dark-scalar

