HYPERON DALITZ DECAYS

WITH PANDA@HADES

SWEDISH NUCLEAR PHYSICISISTS' MEETING UPPSALA

JANA RIEGER

OCTOBER 23, 2023

Content

Motivation

 $\begin{array}{l} \mbox{Event Selection} \\ \mbox{Leptons} \\ \mbox{Hadrons} \\ \mbox{Σ^0 Dalitz Specific Selection} \end{array}$

 Λ Identification with Machine Learning

Results

A Glance on Heavy Hyperons

Conclusions and Outlook

Motivation

Motivation: Hadron Structure

Hyperons

What if we add strangeness?

Motivation: Time-Like Electromagnetic Transition Form Factors

Coupling of virtual photon to hadron, dependent on four-momentum transfer $Q^2=-q^2$

LINUVED STTE

Branching Ratios

- Hyperon electromagnetic Dalitz decays not observed yet
- Predicted to be $\approx 1\,\%$ of radiative decay
- Background from photon conversion of same order

Hyperon	$\Lambda\gamma$	Λe^+e^- (prediction)
Σ^0	100%	0.5%
Σ ⁰ (1385)	1.25%	$1.25 \cdot 10^{-2}$ %
Λ(1520)	0.85%	$0.85 \cdot 10^{-2} \%$

$\bar{P}ANDA$ @HADES – Setup for pp @ 4.5 GeV Beam Time

General Event Selection - Dalitz Decays

Event must contain at least

- 1 electron
- 1 positron
- 1 proton (Forward or HADES)
- 1 pion

Hyperon Dalitz decay

Full Lepton Tracks

Selection

- Tracks flagged as leptons
- z(vertex)>-1000mm
- RICH r(ring)>17mm
- 2σ RICH-META $\Delta\theta$ cut
- 2σ RICH-META $\Delta\phi$ cut

The Idea Behind Mini Tracklets

Challenges:

- Low $\Sigma^0 \Lambda$ mass difference $\rightarrow slow$ leptons
- Escape detector in magnetic field

Idea:

- Require 1 full lepton track + 1 mini-tracklet
- Mini-tracklet = RICH ring + MDC I+II
- Assign charge opposite to fully detected lepton
- Cleanup: 2σ RICH-Track cuts in θ and ϕ

Hadron Selection

- **PID** cut around theoretical β vs. p
- **Missing mass** of detected particles $MM(p + \pi^{-} + e^{+/-}) > M(p + K) - 20 \text{ MeV}$ (M(p + K) = 1432 MeV)
- Invariant mass of Λ daughters 1060 MeV<M $(p + \pi^{-}) <$ 1170 MeV

Σ^0 Dalitz Specific Selection

Safe cuts from kinematics: 0 signal loss

- $m_p + m_K < MM(\Lambda e^{+/-}) < 2300 \,\mathrm{MeV}$
- $p_{e^+/-} < 450 \, {
 m MeV}$
- Mini tracklet polar angle $< 90^{\circ}$

Cleanup cuts, chosen from simulation

- e^+e^- track distance (primary vertex)
- z coordinate of primary vertex
- Vertex distance
- $p\pi^-$ track distance (secondary vertex)

Λ Selection – Machine Learning based Step 1: Apply pre-selection cuts

pp data, 7 days

proton in Forward Detector

pp data, 7 days

UNIVERSITET

LIDDSAL /

TMVA Analysis

Training on DATA

Classification without labels: Neymann-Pearson Lemma: the optimal classifier is the ratio of probabilities of the event being signal and background respectively, or any classifier that is monotonically related to it

$\begin{array}{l} \Lambda \ Selection \ - \ ML \ based \\ \textbf{Step 2:} \ Divide \ the \ pp \ data, \ 7 \ days \ into \ S+B \ and \ B \ sample \end{array}$

 $\begin{array}{l} \mbox{Signal} + \mbox{Background: } 1108 < m_{\Lambda} < 1124 \\ \mbox{Background: } 1090 < m_{\Lambda} < 1108 \mbox{ or } 1124 < m_{\Lambda} < 1142 \\ \end{array}$

proton in HADES

pp data, 7 days

proton in Forward Detector pp data, 7 days

Λ Selection – ML based

Step 3: Define input variables

- Opening angle of p and π
- Opening angle of e^+ and e^-
- Coordinates of POCA of e^+ and e^-
- Coordinates of POCA of p and π
- Distance of closest approach of e^+ and e^-
- Distance of closest approach of p and π
- Pointing vector angle

TMVA Evaluation ROC Curve

Illustrate the performance of a trained network

- True Positive Rate (TPR): True positives / all positives
- False Positive Rate (FPR): False positives / all negatives

Λ Selection – ML based

Step 4: Perform the training

Train on 200000 events Training methods that have been applied:

Boosted Decision Tree and Multi Layer Perceptron, 4x4 Layers

proton in HADES

pp data, 7 days

proton in Forward Detector pp data, 7 days

Λ Selection – ML based **Step 5:** Find the best cut position

Use F_{β} with $\beta = 3$ for **Boosted Decision Tree**

proton in HADES

Maximum at classifier = -0.03

 $\mathcal{F}_eta = (1 + eta^2) rac{ extsf{precision} \cdot extsf{recall}}{eta^2 \cdot extsf{precision} + extsf{recall}}$

LIDDSAL /

$\begin{array}{l} \Lambda \ Selection - ML \ based \\ \textbf{Step 5:} \ Find \ the \ best \ cut \ position \end{array}$

proton in HADES

Maximum at classifier = -0.03

proton in Forward Detector Maximum at classifier = 0.08

UPPSALA UNIVERSITET

$\Lambda e^{+/-}$ Invariant Mass Spectrum

pp data, 7 days

proton in HADES

proton in Forward Detector

Sideband Analysis

p in HADES

Divide into 5 $p\pi^-e^{+/-}$ invariant mass regions

 \rightarrow $% \left({{\operatorname{Can}}}\right)$ Can be done bin by bin with full data set

Sideband Analysis

p in Forward Detector

Divide into 3 $p\pi^-e^{+/-}$ invariant mass regions

$\Lambda e^{+/-}$ Invariant Mass, Sideband Subtracted

Only Lambda selection

- Fit bifurcated Gaussian to signal
- Limit parameters from sim result
- Fit signal function + pol3 background to pp data, 7 days

$\Lambda e^{+/-}$ Invariant Mass, Sideband Subtracted

Only Lambda selection

- Fit bifurcated Gaussian + pol3 background
- For BR= 5 · 10⁻³: almost 5 × more Dalitz decays than photon conversion in peak
- No conversion events in Forward Detector

A GLANCE ON HEAVY HYPERONS

BOTH LEPTON TRACKS FULLY RECONSTRUCTED

Expectations from Simulations

- 500 000 events analyzed
- Assumed Luminosity $\mathcal{L} = 6.47 \, \mathrm{pb}^{-1}$

LIDDSALA UNIVERSITET

 $\Sigma^{0}(1385)$

strunos 100 120F

80

h_hyperon Entries Mean Std Dev

4158 1384 34.34

5733

Conculsions and Outlook

- Inclusive analysis with mini tracklet seems promising
- Boosted Decision Trees make good background suppression possible while preserving much of Λ signal
- Clear Σ^0 after side-band analysis
- HADES can do first measurement of the Σ^0 Dalitz decay!

Outlook

- Fine-tune analysis
- Run on full pp@4.5 GeV data set
- Do $\Sigma^0
 ightarrow \Lambda \gamma$ analysis
 - $\rightarrow \qquad {\sf Measure \ Dalitz \ decay \ branching \ ratio}$
- Do full analysis for Heavy hyperon Dalitz decays
 - $\rightarrow \quad \text{Measure upper limit of Dalitz decay branching ratio}$

BACKUP

Σ^0 Dalitz Specific Selection – p in HADES

Use Simulations to select good cut positions

Σ^0 Dalitz Specific Selection – p in HADES

Use Simulations to select good cut positions

Σ^0 Dalitz Specific Selection – p in Forward Detector

Use Simulations to select good cut positions

