Towards Realistic Hyperon Reconstruction using Deep Learning in the PANDA Experiment

Adeel Akram

 $\begin{array}{c} {\rm Uppsala\ University}\\ a deel. a kram@physics. uu.se \end{array}$

Annual SFS-KF and SFAIR Meeting

Uppsala, Sweden (23 - 25 October 2023)

October 24, 2023

Adeel Akram (PANDA C.)

October 24, 2023 1 / 29

イロト 不得下 イヨト イヨト

Outline

- Motivation
- PANDA Experiment at FAIR
- Towards Realistic Hyperon Reconstruction:
 - Muon Reconstruction
 - ▶ Hyperon Reconstruction
- Track Evaluation
- Conclusions

э

Motivation

How well can machine learning be used for the purpose of track reconstruction? Most importantly, reconstructing

- Low momentum tracks, and
- with displaced vertices

These questions are answered in Part II of my doctoral thesis [1].

[1] A. Akram, Towards Realistic Hyperon Reconstruction in PANDA: From Tracking with Machine Learning to Interactions with Residual Gas, Doctoral Thesis, Uppsala University, Uppsala (2023)

イロト イボト イヨト イヨト

October 24, 2023

3/29

PANDA Experiment at FAIR

- Future Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany.
- PANDA is a general-purpose fixed target experiment with almost 4π coverage.
- Antiproton beam: 1.5 GeV/c to 15 GeV/c from High Energy Storage Ring (HESR).
- Interaction rate: up to 20 MHz.

イロト イボト イヨト イヨト

October 24, 2023

The PANDA Detector

Adeel Akram (PANDA C.)

5/29

Straw Tube Tracker (STT)

- 4224 straw tubes
- 15 19 axial layers (green)
- 8 skewed layers $(\pm 2.9^{\circ})$ (red and blue)
- $\bullet\,$ Radial coverage: 15 cm to 41.8 cm
- $\bullet\,$ Longitudinal coverage: 150 cm
- The magnetic file is $\vec{B} = 2$ T (Solenoid)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

What is the Challenge?

Focus on the $r\phi\mbox{-plane}$ of the STT detector:

- Detector geometry:
 - straight and skewed tubes
 - hexagonal arrangement of straw tubes
- Track topology:
 - spiralling
 - overlapping
 - ► crossing
- \Rightarrow Use deep learning for track reconstruction

How to Apply Deep Learning?

- Data Representation
 - ▶ Image Representation (Fixed Grid)
 - ▶ Point-cloud Representation (Hit Pairs, Hit Sequences, Hit Graphs)
- Deep Learning Tasks
 - Classification (Supervised Learning)
 - Clustering (Unsupervised Learning)
- Deep Learning Models
 - ▶ Depends on what we have decided above: DNNs, RNNs, CNNs, GNNs, etc.

イロト イヨト イヨト

October 24, 2023

8 / 29

The strategy is to use two pipelines:

- Deep Learning (DL) pipeline
 - A standard approach, tested on **muons** (μ^{\pm})
- Geometric Deep Learning (GDL) pipeline
 - A more elaborate approach was first tested with **muons** (μ^{\pm}) and then with **hyperons**

イロト 不得 とくほと くほとう ほ

9/29

October 24, 2023

 \Rightarrow Track evaluation

The Pipeline

[1] Image credited to Exa.TrkX-L2IT Collaboration.

・ロト ・四ト ・ヨト ・ヨト October 24, 2023 10/29

э

Adeel Akram (PANDA C.)

Let's define the variables first:

- $N_{\text{particles}}$: # of generated particles in the detector
- N_{tracks} : # of reconstructed tracks containing at least 5 or 6 hits (denoted N_r)
- $\bullet\,$ Selected: # of particles/tracks within STT acceptance.
- Reconstructable: # of particles with # of hits > 7 STT hits (denoted N_t).
- Matched: # of particles (tracks) matched to a reconstructed track (particle).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 うのの

Track Evaluation

 $\epsilon_{\rm phys}$ is the efficiency considering both detector and algorithm:

$$\epsilon_{\rm phys} = \frac{N_{particles} ({\rm selected, matched})}{N_{particles} ({\rm selected})}$$

 $\epsilon_{\rm tech.}$ is the efficiency of algorithm itself:

$$\epsilon_{\text{tech.}} = \frac{N_{particles} (\text{selected, reconstructable, matched})}{N_{particles} (\text{selected, reconstructable})}$$

Track purity measures the accuracy of a reconstructed track in matching a particle:

$$Purity = \frac{N_{tracks}(selected, matched)}{N_{tracks}(selected)} \equiv 1 - Ghost Rate$$
(3)

Adeel Akram (PANDA C.)

October 24, 2023 12 / 29

イロト 不得下 イヨト イヨト

(1)

(2)

Muon Reconstruction in STT

Adeel Akram (PANDA C.)

October 24, 2023 12 / 29

э

イロト イロト イヨト イヨト

Data Generation

- Five $\mu^+\mu^-$ pairs per event using a *Box Generator*
- $\bullet~100~{\rm MeV/c}-1.5~{\rm GeV/c}$
- In total, 10^5 events are generated
- Track reconstruction in $r\phi$ -plane of STT, restricted to straight sections
- DL and GDL pipelines for muons

イロト 不得下 イヨト イヨト

Track Evaluation (I)

Using the criteria of $N_t \ge 7, N_r \ge 5$ and MF > 50%, the results are

	$\epsilon_{phys.}$ [%]	$\epsilon_{tech.}$ [%]	GR [%]	CR [%]
Deep Learning	76.3 ± 0.3	77.2 ± 0.3	3.64 ± 0.33	17.2 ± 0.1
Geometric Deep Learning	91.0 ± 0.3	92.6 ± 0.3	1.25 ± 0.32	11.5 ± 0.1

Table: Tracking efficiencies, ghost rate (GR), clone rate (CR).

イロト イロト イヨト イヨト

October 24, 2023

э

14/29

 \Rightarrow A clear increase in performance with Geometric Deep Learning!

Track Evaluation (II): Tracking Efficiencies vs Transverse Momentum

Adeel Akram (PANDA C.)

 ・< 通 > < E > < E > E < つへ(*)</td>

 October 24, 2023
 15 / 29

Track Evaluation (II): Tracking Efficiencies vs Azimuthal Angle

Adeel Akram (PANDA C.)

October 24, 2023 16 / 29

Track Evaluation (II): Tracking Efficiencies vs Theta Angle

ъ October 24, 2023 17/29

Tracking Efficiency Loss

Adeel Akram (PANDA C.)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

18 / 29

Hyperon Reconstruction in STT

Adeel Akram (PANDA C.)

October 24, 2023 18 / 29

<ロ> (四) (四) (三) (三) (三) (三)

Data Generation

- $\bar{p}p \to \bar{\Lambda}\Lambda \to \bar{p}\pi^+p\pi^-$ events simulated with EvtGen at $p_{beam} = 1.642 \text{ GeV/c}$
- In total, 10^5 events are generated
- On average, three tracks per event $\rightarrow \bar{p}$ emitted at small angles, escapes STT
- Final state particles are
 - ▶ low p_t hadrons such as p, \bar{p} and π^{\pm}
 - ▶ with secondary decay vertices
- Same GDL pipeline as for muons

19/29

Using the criteria of $N_t \ge 7$, $N_r \ge 5$ and MF > 50%, the results are

	$\epsilon_{phys.}$ [%]	$\epsilon_{tech.}$ [%]	$\mathrm{GR}\ [\%]$	CR [%]
Geometric Deep Learning	89.6 ± 0.5	97.1 ± 0.6	0.5 ± 0.6	4.9 ± 0.1

Table: Tracking efficiencies, ghost rate (GR), clone rate (CR).

э

イロト 不得下 イヨト イヨト

Track Evaluation (II)

Adeel Akram (PANDA C.)

October 24, 2023 21 / 29

э

Conclusions

- Interaction Network (GDL) is proven to be better than the Dense Network (DL).
- Pion track efficiency > 95% for $p_t > 0.05 \text{ GeV/c}$
- Proton track efficiency > 95% for $p_t > 0.1 \text{ GeV/c}$.
- Track efficiency > 90% in the full vertex position range considered *i.e.* up to $d_0 = 14$ cm.

Heavier hyperons, Ξ^- and Ω^- , decay into Λ hyperons with $d_0 < 15$ cm [1].

[1] J. Regina, Time for Hyperons: Development of Software Tools for Reconstructing Hyperons at PANDA and HADES, Doctoral Thesis, Uppsala University, Uppsala (2021)

イロト 不同 ト イヨト トヨー うらつ

END

Adeel Akram (PANDA C.)

Ctober 24, 2023 22 / 29

Backup

Adeel Akram (PANDA C.)

October 24, 2023 22 / 29

2

・ロト ・回 ト ・ヨト ・ヨト

Pipeline: Graph Construction

Graph representation of tracks (*i.e.* a hit graph) in terms of nodes and edges:

- *node*: hit position of a particle
- *edge*: a connection between two hits

A heuristic method for layer-wise edge construction in adjacent sectors:

- *input graphs*: contain True & False edges
- ground truth: contain only True edges

イロト 不得 トイヨト イヨ

Pipeline: Edge Classification

 \Rightarrow Predicted Graphs: Weighted graphs with edge score/probability.

Adeel Akram (PANDA C.)

October 24, 2023 24 / 29

イロト イボト イヨト イヨト

Pipeline: Track Formation

 \Rightarrow Track Candidates: Cluster hits of weighted graphs using the DBSCAN

Adeel Akram (PANDA C.)

October 24, 2023 25 / 29

Let's define the variables first:

- $N_{\text{particles}}$: # of generated particles in the detector
- N_{tracks} : # of reconstructed tracks containing at least 5 or 6 hits (denoted N_r)
- $\bullet\,$ Selected: # of particles/tracks within STT acceptance.
- Reconstructable: # of particles with # of hits > 7 STT hits (denoted N_t).
- Matched: # of particles (tracks) matched to a reconstructed track (particle).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 うのの

Track Evaluation (II)

A particle is **matched** to a reconstructed track if more than

- 50% of the hits in the reconstructed track belong to the same true particle, and
- 50% of the hits in the matched true particle are found in the reconstructed tracks.

This is known as a two-way matching scheme with a matching fraction (MF) > 50%.

イロト イボト イヨト イヨト

Track Evaluation (III)

 $\epsilon_{\rm phys}$ is the efficiency considering both detector and algorithm:

$$\epsilon_{\rm phys} = \frac{N_{particles}({\rm selected, matched})}{N_{particles}({\rm selected})}$$

 $\epsilon_{\rm tech.}$ is the efficiency of algorithm itself:

$$\epsilon_{\text{tech.}} = \frac{N_{particles} (\text{selected, reconstructable, matched})}{N_{particles} (\text{selected, reconstructable})}$$

Track purity measures the accuracy of a reconstructed track in matching a particle:

$$Purity = \frac{N_{tracks}(selected, matched)}{N_{tracks}(selected)} \equiv 1 - Ghost Rate$$

Adeel Akram (PANDA C.)

イロト 不得下 イヨト イヨト

(4)

(5)

(6)

Track Evaluation (IV)

The transverse momentum (p_t) , lab polar angle of the track (θ) , and azimuthal angle of the track (ϕ) are defined as follows:

$$p_t = \sqrt{p_x^2 + p_y^2}$$

$$\theta = \tan^{-1}(p_t, p_z)$$

$$\phi = \tan^{-1}(p_y, p_x)$$

and the radial distance (d_0) between the interaction point and the decay vertex:

$$d_0 = \sqrt{v_x^2 + v_y^2}$$

Adeel	Akram	(P∤	ANDA	4 C.])
-------	-------	-----	------	-------	---

October 24, 2023	29 / 29
------------------	---------

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○<