

Penning traps for spectroscopy of highly charged ions

Andreas Solders

SFAIR at Uppsala November 2014

Forbidden transitions -FA

Optical domain for high-Z range

Zeeman effect scales with magnetic field Microwave domain for a few T

Production of cold HCI

SpecTrap Ground state hyperfine splitting in HCI

- Aim to measure small corrections to the energy levels from
 - the Bohr-Weisskopf effect
 - QED-contributions
- lons need to be extremely cold to reduce the Doppler width and increase the signal.
- HCI will be sympathetically cooled by laser cooled Mg⁺ ions.
- Excite with spectroscopy laser and record florescence spectrum.
- Detection is challenging due to difficult wavelengths and low signal rates

The SpecTrap setup

Cooling of Mg⁺ ions

- Resistive cooling of Mg⁺ down to 4 K successfully demonstrated.
- Laser cooling of Mg⁺ below 60 mK successfully demonstrated.
- HCI (Ar¹³⁺) from an EBIT successfully loaded and sympathetically cooled.

Ion cloud compression by rotating wall

TIME [s]

g_J-factor of the bound electron in a hydrogen-like ion fB

UPPSALA UNIVERSITET

ARTEMIS

A Half-open Penning trap for laser-microwave double resonance spectroscopy

UPPSALA UNIVERSITET Laser-microwave double resonance spectroscopy for bound electron g-factor measurements in hydrogen-like ions

From g_F and $g_{F'}$ it is possible to simultaneously and independently derive:

- g_J for comparison with QED calculations.
- g_I independent of diamagnetic shielding, i.e. shielding effects can for the first time be measured and theory can be tested.

Penning trap advantages

Ions can be cooled nearly to rest ⇒ Small Doppler shift and broadening

Ions are well-localized \Rightarrow Laser irradiation is easy

Many ions in a dense ion cloud can be investigated at the same time ⇒ High fluorescence signal

Extended time for measurement, stable conditions ⇒ Makes life easier, allows slow transitions

Extra

- Small solid angle for light collection
 - Small windows
 - High stray magnetic field
 - In total ~1% / window
- Very high LHe consumption (~30 L/day)
 - Running time only 20 days/year
- Damaged in the transportation
 - He leak into the vacuum system
 - Ion storage deteriorate over time
 - Not suitable for HCI

New SUper conducting MAgnet

- New SUMA for SpecTrap: ~300 k€
 - Increased solid angle by a factor of 10.
 - Significantly lower LHe consumption
 - Improved vacuum

UPPSALA UNIVERSITET Andreas Solders

Reinhold Schuch Eva Lindroth

UNIVERSITY OF GOTHENBURG

Ingvar Lindgren

Wolfgang Quint et al. GSI-Darmstadt

Manuel Vogel et al. Technische Universität Darmstadt

V. Hannen et al. Universität Munster

Richard Thompson et al. Imperial Collage London

Comparison with stored beam measurements

- In the storage ring
 - Velocity is very high
 - Doppler shifts to a visible wavelength
 - Doppler shift is hard to calibrate
 - Line is broad (many GHz)

• In the trap

Detector

• Velocity is very low

Fluorescence

Confined Ion(s)

- Wavelength inconvenient
- No Doppler shift

Excitation Laser / MW

- Line is narrow (tens of MHz)
- Signal is weak