The pion transition form factor Why it is interesting and how to calculate it

Stefan Leupold

Uppsala, Nov. 2014

Collaborators

- Martin Hoferichter (Darmstadt)
- Bastian Kubis (Bonn)
- Franz Niecknig (Bonn)
- Sebastian Schneider (Bonn, now industry)

related previous work of the Bonn group:

- F. Niecknig, B. Kubis and S. P. Schneider, Eur. Phys. J. C 72, 2014 (2012)
 S. P. Schneider, B. Kubis and F. Niecknig, Phys. Rev. D 86, 054013 (2012)
- M. Hoferichter, B. Kubis and D. Sakkas, Phys. Rev. D 86, 116009 (2012)

Pion transition form factor

Why is it interesting?

- explore intrinsic structure of lightest hadron = pion
 - \rightsquigarrow form factors
 - \rightsquigarrow for instance $\gamma^* \rightarrow \pi^0 \gamma^{(*)}$
- background for physics beyond standard model

g-2 of the muon — status

Jegerlehner/Nyffeler, Phys. Rept. 477, 1 (2009)

g-2 of the muon — theory

Largest uncertainty of standard model: hadronic contributions

Hadronic contribution to g - 2 of the muon

vacuum polarization

- related to cross section $e^+e^- \rightarrow$ hadrons
- \rightarrow measurable

• $\gamma^* \gamma^* \leftrightarrow hadron(s)$ is not easily accessible by experiment

- \hookrightarrow need good theory with reasonable estimate of uncertainty (ideally an effective field theory)
- \hookrightarrow need experiments to constrain such hadronic theories

Hadronic light-by-light contribution

true for all hadronic contributions:

 the lighter the hadronic system, the more important (though high-energy contributions not unimportant for light-by-light)
 → γ^(*)γ^(*) ↔ π⁰ γ^(*) γ^(*) ↔ 2π, ...

Unitarity and analyticity

- constraints from quantum field theory: partial-wave amplitudes for reactions/decays must be
 - unitary:

$$S S^{\dagger} = 1$$
, $S = 1 + iT \Rightarrow 2 \operatorname{Im} T = T T^{\dagger}$

→ note that this is a matrix equation: $Im T_{A \to B} = \sum_{X} T_{A \to X} T^{\dagger}_{X \to B}$ → in practice: use most relevant intermediate states X • analytical (dispersion relations):

$$T(s) = T(0) + rac{s}{\pi} \int\limits_{-\infty}^{\infty} ds' \, rac{\operatorname{Im} T(s')}{s' \left(s' - s - i\epsilon
ight)},$$

→ can be used to calculate whole amplitude from imaginary part

Using lowest-mass states

Stefan Leupold

hadronic light-by-light contribution

 \rightsquigarrow need pion transition form factor

μ

Dispersive reconstruction I

pion transition form factor

 \rightsquigarrow need pion vector form factor

Dispersive reconstruction II

Required input

and genuine three-body correlations (one-parameter function!)

 \rightsquigarrow fit to cross section of $e^+e^-
ightarrow \pi^+\pi^-\pi^0$

Fit to $e^+e^- \rightarrow \pi^+\pi^-\pi^0$

- \bullet dominated by narrow resonances $\omega,\,\phi$
- → use Breit-Wigners plus background for genuine three-body correlations
- → fully include cross-channel rescattering of pion pairs (two-body correlations)

M. Hoferichter, B. Kubis, S.L., F. Niecknig and S. P. Schneider, arXiv:1410.4691 [hep-ph]

Results

• final aim: double-virtual pion transition form factor

- so far: single-virtual pion transition form factor
 - time-like: cross section $e^+e^-
 ightarrow \pi^0\gamma$
 - \hookrightarrow compare to experimental data
 - space-like: reaction $\gamma^* \gamma \rightarrow \pi^0$
 - \hookrightarrow prediction for low energies

Time-like pion transition form factor

theory uncertainties from

- different data sets for $e^+e^-
 ightarrow 3\pi$
- different pion phase shifts
- other intermediate states than 2π neglected
 - \hookrightarrow explored by different cutoff for range where 2π dominates

\rightsquigarrow excellent agreement

M. Hoferichter, B. Kubis, S.L., F. Niecknig and S. P. Schneider, arXiv:1410.4691 [hep-ph]

Space-like pion transition form factor

- this is a prediction, no data yet at low energies
- expect new measurements from BESIII
- final aim: double virtual transition form factor
- \rightarrow relevant for g-2

M. Hoferichter, B. Kubis, S.L., F. Niecknig and S. P. Schneider, arXiv:1410.4691 [hep-ph]

Summary and Outlook

- form factors allow access to intrinsic structure of hadrons
- in addition input for standard-model baseline calculations for high-precision determinations (muon's g 2)
- ← requires model-independent hadronic calculations with reliable uncertainty estimates
- \hookrightarrow we are sharpening our theory tools to improve the accuracy of predictions
 - same dispersive framework will be applied to strange-baryon transition form factors (Carlos Granados and SL, work in progress)

•
$$\Sigma \rightarrow \Lambda e^+ e^-$$

• $\Sigma^* \to \Lambda \, e^+ e^-$ (decuplet-to-octet transition)

- \hookrightarrow access to spin properties from decay pattern of strange baryons
- \hookrightarrow predictions for PANDA

backup slides

Pion vector form factor

Sebastian P. Schneider, Bastian Kubis, Franz Niecknig, Phys.Rev.D86:054013,2012

Dispersive reconstruction II

Dispersive reconstruction II

