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Modern nuclear data evaluation™
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Uncertainty quantification

Both differential data and integral data come with associated
uncertainties

the end product — evaluated nuclear data files contains
uncertainties as well

A Monte Carlo based method called ‘Total Monte Carlo (TMC)’
was developed in 2008 for nuclear data uncertainty

quantification:

Ref: A.J. Koning and D. Rochman, 2008. Annals of Nuclear Energy, 35 (11), 2024 -
20130.

[+)

Other methods exist




Total Monte Carlo (TMC)

* We compare model
calculations with experimental
data to obtain a specific a priori
uncertainty for each parameter.
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section, fission yields,
angular distributions
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Uncertainty reduction

Physical models
parameters: TALYS
based system (T6)

15t level of constraint:
Differential data

-

A large set of
acceptable ND libraries
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2nd level of constraint:
Integral benchmarks

Involves two steps:

Random nuclear data from the 1¢t
step is used as the prior for the 2nd

step.

Simulations:

mcnp etc.

Weighted random files
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Incorporating differential data

* If C¢ is our differential experimental covariance matrix;
: 2
* We can compute a generalized y, :

22 =(x-2(p®)) c{x - z(p®))

 Where;

7( p(k))is a vector of calculated observables found in the kt" random file

(*1)

P js the parameter set of the kt" random file
X is a vector of experimental observables

* We then assign each random file a weight based on the
likelihood function:

Wk(E) =F° K (*2) [ ¢ J

Ref: P. Helgesson et. al., 2014. . Incorporating experimental information in the TMC
methodology using file weights. Int. Workshop on Nuclear Data Covariances




2"d |evel of constraint -
Incorporating integral data

e Criticality benchmark cases
e Application case

e Incorporate integral data

» Accept/reject method

» Assign weights based on the likelihood function



Cases available

1. Benchmark cases:

* International Criticality Safety Benchmark
Evaluation Project (ICSBEP)
- Contains about 4708 critical and
subcritical configurations etc.

* Experiments are Categorized into:
* fissile media (PU, HEU’ LEU etc.) Benchmark example — 23°Pu Jezebel.
) o . Picture taking from the ICSBEP Handbook
* physical form of the fissile material

* neutron energy range

2. Application case:

* European Lead-Cooled Training Reactor (ELECTRA)
* Part of GEN-IV research in Sweden
* Research and training

Wallenius et al., 2012. Nuclear Technology Vol. 177, p. 303-313.




Incorporating integral data

Only relevant benchmarks for a particular application system must
be used

Ref: E. Alhassan et. al., 2014. Selecting benchmarks for reactor calculations.
PHYSOR 2014 Int. Conference

We compute a similarity index using the Pearson correlation

fficient:
coefticien o Cov(keff,, keffy, )

sys !

O ket O effgy

Simulations are performed with the same nuclear data for
both application and benchmark cases

Strong correlation = strong similarity
Weak correlation = weak similarity




keff values for ELECTRA

Similarity between benchmark
and application case (ELECTRA)
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Accept/reject method
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By setting KZW less weights are assigned to benchmarks with weak
correlation to the application case while strongly correlated systems

are assigned higher weights.




Prior - posterior Kk distributions
for Accept/reject method

Prior :> Differential data only
Posterior :> Differential and integral data
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Using the likelihood function

A more rigorous method is to base the uncertainty reduction on the
maximum likelihood function

Assign weights to random files using:

ZZ\R\
W,y = — 2 (*3)
1(B) 1 ‘R‘

e mlﬂ

R is the correlation between benchmark and the application case
Chi-squared is given by:

2 (keff (i) keEf exp)

GE

R ensures that only relevant benchmarks for a particular application [ J
case are used.




Accept/reject vs. maximum likelihood

» Results in brackets represent the percentage reduction achieved after
implementing the two methods.

Isotope Benchmark Prior [pcm] Accept/reject [pcm] Maximum Likelihood [pcm]

29y pmfl 723+23 445+ 15 (38%) 469 + 32 (35%)
20py  pmfl 1011+32 809 + 26 (20%) 869 + 33 (14%)
21py  pmfl 1191+38 1191 + 38 (0%) 1185 + 41 (0.5%)

A significant reduction in uncertainty was achieved for Pu-239
and Pu-240 after adding benchmark information.




Our goal: Combine C and D

_IThinking of two approaches:
i 2 e -
1. Calculate a weighted total }; (Similar to the Petten method):

2 2
Zz ~ We e T We xe
‘=
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. 2 . .
By plotting #7 as a function of random nuclear data, we can select a best file.

2. Combine two weights; equation (*2) and (*3) (The Uppsala method):

W. =W X W. » For nuclear data
! k(E) '(B) uncertainty reduction

» Select the random file with the largest weight (best file for TENDL-20157)
_l Post adjustment feedback to model calculations and experiments. [ 16 J

) Method still under development (resonance region still a challenge).




Conclusion

We have proposed approaches for reducing ND uncertainties

Method has been applied to:
A full LFR core at BOL
A set of criticality benchmarks from the ICSBEP handbook.

A significant reduction in ND uncertainty was achieved.

Methods can provide updated covariance matrix information and model
parameter distributions for post adjustment feedback

Apply these methods with multiple benchmarks is on-going

* Qur goal: combine differential and integral data for nuclear data evaluation
and uncertainty reduction (Improve TMC)




Thank you!

Email: erwin.alhassan@physics.uu.se
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