Reducing nuclear data uncertainties using differential and integral benchmark data

E. Alhassan¹, H. Sjöstrand¹, P. Helgesson¹, M. Österlund¹, A.J. Koning^{1,2}, D. Rochman², S. Pomp¹

¹Division of Applied Nuclear Physics, Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden

²Nuclear Research and Consultancy Group (NRG), Petten, The Netherlands

Email: erwin.alhassan@physics.uu.se

Erwin Alhassan, Swedish Nuclear Physics meeting, 2014, Uppsala.

Outline

- A. Modern nuclear data evaluation
- B. Total Monte Carlo
- C. Incorporating differential data
- D. Incorporating integral data
- E. Goal: Combine C and D (work on-going)
- F. Some results
- G. Conclusion

Modern nuclear data evaluation*

Uncertainty quantification

- Both differential data and integral data come with associated uncertainties
- the end product evaluated nuclear data files contains uncertainties as well
- A Monte Carlo based method called 'Total Monte Carlo (TMC)' was developed in 2008 for nuclear data uncertainty quantification:
 - Ref: A.J. Koning and D. Rochman, 2008. Annals of Nuclear Energy, 35 (11), 2024 20130.
- Other methods exist

Total Monte Carlo (TMC)

Uncertainty reduction

Incorporating differential data

- If C_E is our differential experimental covariance matrix;
- We can compute a generalized χ_k^2 :

$$\chi_k^2 = \left(x - \tau(p^{(k)})\right)^T C_E^{-1}\left(x - \tau(p^{(k)})\right)$$

- Where;
 - $au(p^{(k)})$ is a vector of calculated observables found in the **k**th random file
 - P^(k) is the parameter set of the *kth* random file
 - χ is a vector of experimental observables
- We then assign each random file a weight based on the likelihood function:

$$w_{k(E)} = e^{-\frac{1}{2}\chi_k^2}$$

Ref: P. Helgesson et. al., 2014. . Incorporating experimental information in the TMC methodology using file weights. Int. Workshop on Nuclear Data Covariances

(*1)

(*2)

2nd level of constraint -Incorporating integral data

- Criticality benchmark cases
- Application case
- Incorporate integral data

>Accept/reject method

► Assign weights based on the likelihood function

Cases available

- 1. Benchmark cases:
- International Criticality Safety Benchmark Evaluation Project (ICSBEP)
 - Contains about 4708 critical and subcritical configurations etc.
- Experiments are Categorized into:
 - fissile media (Pu, HEU, LEU etc.)
 - physical form of the fissile material
 - neutron energy range
- 2. Application case:
- European Lead-Cooled Training Reactor (ELECTRA)
- Part of GEN-IV research in Sweden
- Research and training

Wallenius et al., 2012. Nuclear Technology Vol. 177, p. 303-313.

Benchmark example – ²³⁹Pu Jezebel. *Picture taking from the ICSBEP Handbook*

Q

Incorporating integral data

- Only relevant benchmarks for a particular application system must be used
 - Ref: E. Alhassan et. al., 2014. Selecting benchmarks for reactor calculations. PHYSOR 2014 Int. Conference
- We compute a similarity index using the Pearson correlation coefficient:

$$R = \frac{\operatorname{cov}(keff_{sys}, keff_{BM})}{\sigma_{keff_{sys}}\sigma_{keff_{BM}}}$$

- Simulations are performed with the same nuclear data for both application and benchmark cases
- Strong correlation → strong similarity
- Weak correlation \rightarrow weak similarity

Similarity between benchmark and application case (ELECTRA)

ELECTRA against LCT17 case 2

ELECTRA against pmf35

Perturbed Pb-208 nuclear data were used

Accept/reject method

Prior – posterior k_{eff} distributions for Accept/reject method

40% uncertainty reduction achieved for ELECTRA

20% uncertainty reduction achieved for ELECTRA

Using the likelihood function

- A more rigorous method is to base the uncertainty reduction on the maximum likelihood function
- Assign weights to random files using:

$$w_{i(B)} = \frac{e^{-\frac{1}{2}\chi_{i}^{2}|R|}}{\frac{-\frac{1}{2}\chi_{\min}^{2}|R|}{e^{-\frac{1}{2}\chi_{\min}^{2}|R|}}}$$

(*3)

- **R** is the correlation between benchmark and the application case
- Chi-squared is given by:

$$\chi_i^2 = \frac{(k_{eff(i)}^E - k_{eff,exp}^E)^2}{\sigma_E^2}$$

R ensures that only relevant benchmarks for a particular application case are used.

Accept/reject vs. maximum likelihood

Results in brackets represent the percentage reduction achieved after implementing the two methods.

lsotope	Benchmark	Prior [pcm]	Accept/reject [pcm]	Maximum Likelihood [pcm]
²³⁹ Pu	pmf1	723 ± 23	445 ± 15 (38%)	469 ± 32 (35%)
²⁴⁰ Pu	pmf1	1011 ± 32	809 ± 26 (20%)	869 ± 33 (14%)
²⁴¹ Pu	pmf1	1191 ± 38	1191 ± 38 (0%)	1185 ± 41 (0.5%)

A significant reduction in uncertainty was achieved for Pu-239 and Pu-240 after adding benchmark information.

Our goal: Combine C and D

Thinking of two approaches:

1. Calculate a weighted total χ_T^2 (Similar to the Petten method):

$$\chi_T^2 = \frac{w_B \chi_B^2 + w_E \chi_E^2}{w_B + w_E}$$

By plotting χ_T^2 as a function of random nuclear data, we can select a best file.

2. Combine two weights; equation (*2) and (*3) (The Uppsala method):

$$W_T = W_{k(E)} \times W_{i(B)}$$

For nuclear data uncertainty reduction

- Select the random file with the largest weight (best file for TENDL-2015?)
- Post adjustment feedback to model calculations and experiments.
- Method still under development (resonance region still a challenge).

Conclusion

- We have proposed approaches for reducing ND uncertainties
- Method has been applied to:
 - A full LFR core at BOL
 - A set of criticality benchmarks from the ICSBEP handbook.
- A significant reduction in ND uncertainty was achieved.
- Methods can provide updated covariance matrix information and model parameter distributions for post adjustment feedback
- Apply these methods with multiple benchmarks is on-going
- Our goal: combine differential and integral data for nuclear data evaluation and uncertainty reduction (Improve TMC)

Thank you! Email: erwin.alhassan@physics.uu.se