▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Dynamics of the η^\prime meson at finite temperature

Elisabetta Perotti

Department of Physics and Astronomy Uppsala University

12 November 2014

Conclusion

 $U(1)_A$ anomaly in QCD

Width increase in a thermal medium

Large-Nc RChT approach

Conclusion

Symmetries of QCD

$$\mathcal{L}_{QCD} = -rac{1}{4}F^a_{\mu
u}F^{\mu
u}_a + ar{q}[iD_\mu\gamma^\mu - \mathcal{M}]q$$

- gluon field-strength tensor $F^a_{\mu\nu} = \partial_\mu A^a_
 u \partial_
 u A^a_\mu gf_{abc} A^b_\mu A^c_
 u$
- covariant derivative $D_{\mu} = \partial_{\mu} igA_{\mu}^{a}\lambda_{a}/2$
- six dimensional column vector $q_{i,A}$ where i = 1, ..., 6 and A = 1, 2, 3
- quark mass matrix $\mathcal{M} = \text{diag}(m_u, m_d, m_s, m_c, m_b, m_t)$

In the approximation $m_u = m_d = m_s = 0$, the QCD Lagrangian gains the chiral symmetry:

$$U(3)_R \times U(3)_L \simeq SU(3)_V \times SU(3)_A \times U(1)_V \times U(1)_A$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ◆ ○ ヘ ○

A D F A 同 F A E F A E F A Q A

SSB and anomalous symmetry

The ground state is only symmetric w.r.t. $SU(3)_V \times U(1)_V$

- $U(1)_V$: baryon number conservation
- $SU(3)_V$: flavor multiplets

The spontaneous breaking of the $SU(3)_A$ symmetry gives rise to 8 Goldstone bosons:

 $3\pi_s, 4K_s, \eta$

• U(1)_A is anomalous *i.e.* is not symmetry of quantized theory

The Noether current corresponding to the $U(1)_A$ symmetry $J_5^{\mu} = \bar{q} \gamma^{\mu} \gamma_5 q$ is not conserved:

$$\partial_{\mu}J^{\mu}_{5}=rac{N_{f}g^{2}}{16\pi^{2}}F^{a}_{\mu
u} ilde{F}^{\mu
u}_{a}$$

where $\tilde{F}^{\mu\nu}_{a} = \frac{1}{2} \epsilon^{\mu\nu\lambda\rho} F_{a\lambda\rho}$ is the dual field-strength tensor.

If there was no anomaly, the $U(1)_A$ symmetry would also be spontaneously broken and the η' would be the 9th Goldstone boson

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Phase transition \rightarrow Change in symmetry

An example: the spin model of a ferromagnet

In heavy-ion collisions \rightarrow new state of matter: Quark-Gluon Plasma

- production of *fireballs* ($\tau_{fb} \approx 10 20 \text{ fm/}c$)
- deconfinement transition around $T_c \approx 170 \text{ MeV}$

= 900

Chiral symmetry restoration

Lattice QCD studies indicate that at T pprox 170 MeV the order parameter $\langle q \bar{q}
angle
ightarrow$ 0

- · the chiral symmetry should be restored
- chiral multiplets (L,R) should replace flavor multiplets

figure from Borsanyi et al., Nucl.Phys.A904-905:270c (2013)

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

What about the $U(1)_A$ anomaly? \rightarrow deduce information from the behaviour of the η'

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

```
\eta' \longleftrightarrow U(1)_{\mathcal{A}}
```

Determine temperature dependence of

• mass of η' :

a light η' might imply effective restoration of $U(1)_A$

- mixing of η' and η

(Tytgat et al.)

- decay constant of η'
- lifetime of η'

Low-temperature calculations \rightarrow thermal medium \approx gas of pions

-Does η' survive in the medium? -Can we see the effect of the medium on the η' ?

 \rightarrow Compare: in-medium lifetime of the η' with lifetime of a *fireball* ($\tau_{n'}^{vac} \approx 600 \tau_{fb}$)

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Width increase in a thermal medium

The width Γ of a particle with finite lifetime can be derived from its self-energy:

$$m\Gamma = -\operatorname{Im} \Pi(m^2)$$

We want to calculate the in-medium width of the η^\prime

• Every medium particle has thermal energy according to the Bose-Einstein distribution $n_B(E_p) = \frac{1}{e^{E_p/T} - 1}$

The collisional broadening is the main contribution to the in-medium width addition:

$$\Gamma_{coll} = \int \frac{\mathrm{d}^3 p}{(2\pi)^3} n_B(E_p) \frac{|\bar{p}|}{E_p} \sum_i \sigma_i(E_p)$$

where we need to sum over all the inelastic cross sections involving an η' and any type of pion in the initial state.

Conclusion

Collisional broadening

From classical kinetic theory:

-particle in a medium = probe that travels with velocity v

-mean free path λ

-cross section $\boldsymbol{\sigma}$ for the probe to interact with a medium particle

-medium made of bosonic gas

 \rightarrow density of the medium particles $n = \int \frac{d^3p}{(2\pi)^3} n_B(E_p)$

We have:

lifetime of the probe $\tau_{\rho} = \frac{\lambda}{v} = \frac{1}{n\sigma v} \longrightarrow$ in-medium width $\Gamma = n \langle \sigma v \rangle$

Average for some observable \mathcal{O} :

$$\langle \mathcal{O} \rangle = \frac{\int \frac{\mathrm{d}^3 p}{(2\pi)^3} \mathcal{O} n_{\mathcal{B}}(E_{\rho})}{\int \frac{\mathrm{d}^3 p}{(2\pi)^3} n_{\mathcal{B}}(E_{\rho})} = \frac{1}{n} \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \mathcal{O} n_{\mathcal{B}}(E_{\rho})$$

 \rightarrow Average of the probe's in-medium width:

$$\Gamma_{coll} = \int \frac{\mathrm{d}^3 p}{(2\pi)^3} v \sigma(E_p) n_B(E_p)$$

Note: the same result can be obtained using field theory

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Conclusion

Relevant processes

We consider two types of interactions that contribute to collisional broadening:

 $\eta' \pi o \eta \pi$ $\eta' \pi o \bar{K} K$

where

$$\pi = \begin{pmatrix} \pi^+ \\ \pi^0 \\ \pi^- \end{pmatrix} \quad \mathcal{K} = \begin{pmatrix} \mathcal{K}^+ \\ \mathcal{K}^0 \end{pmatrix} \quad \bar{\mathcal{K}} = \begin{pmatrix} \bar{\mathcal{K}}^0 \\ \mathcal{K}^- \end{pmatrix}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Large-N_c limit

In the large- N_c limit, the divergence of the axial current vanishes:

$$\partial_{\mu}J_{5}^{\mu}=\frac{1}{N_{c}}\frac{N_{f}\lambda}{16\pi^{2}}F_{\mu\nu}^{a}\tilde{F}_{a}^{\mu\nu}$$

since $\lambda = N_c g^2 = const$ for $N_c \to \infty$.

 \rightarrow The η' formally becomes the 9th Goldstone boson

In the combined chiral and large-N_c limit there are 9 light pseudoscalars

Why Resonance Chiral Theory?

When the energy of the process is of the order of the resonance mass...

- · resonance effects must be taken into account
- \rightarrow Resonance Chiral Theory (*RChT*)

(Ecker/Gasser/Pich/de Rafael, Nucl.Phys. B321, 311 (1989))

- no systematic effective field theory
- correct low-energy, large-N_c limit
- · better high energy behaviour

RChT _____ ChPT

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Conclusion

How to include resonances

Ingredients:

• nonet field S which contains the lowest-lying scalar resonances $(J^{PC} = 0^{++})$

$$S = egin{pmatrix} rac{a_0^0}{\sqrt{2}} + rac{\sigma}{\sqrt{2}} & a_0^+ & \kappa^+ \ a_0^- & -rac{a_0^0}{\sqrt{2}} + rac{\sigma}{\sqrt{2}} & \kappa^0 \ \kappa^- & ar\kappa^0 & f_{0s} \end{pmatrix}$$

• nonet field V which contains the lowest-lying vector resonances $(J^{PC} = 1^{--})$

$$V_{\mu\nu} = \begin{pmatrix} \frac{\rho^{0}}{\sqrt{2}} + \frac{\omega}{\sqrt{2}} & \rho^{+} & K^{*+} \\ \rho^{-} & -\frac{\rho^{0}}{\sqrt{2}} + \frac{\omega}{\sqrt{2}} & K^{*0} \\ K^{*-} & \bar{K}^{*0} & \phi \end{pmatrix}_{\mu\nu}$$

◆□ > ◆□ > ◆三 > ◆三 > ● ● ● ●

・ロト ・聞ト ・ヨト ・ヨト

æ

Conclusion

RChT diagrams

Conclusion

RChT results

sizeable width increase, \approx 10 MeV at $T \approx$ 120 MeV

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

(vacuum width \approx 200 keV)

-importance of KK final state

Conclusion

Mass modification

· modify propagators

for each resonance use the correspondent mass

$$\frac{1}{t, u - M_{a_0}^2} \rightarrow \frac{M_{\kappa,\sigma}^2}{M_{a_0}^2(t, u - M_{\kappa,\sigma}^2)}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Good agreement between the width increase obtained using:

- one single mass for all scalar resonances (M_{a₀})
- three different masses for κ , σ , a_0 resonances

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Conclusion

Even if approximating the medium by a pion gas does not work close to T_c

• for $T < T_c$ we can trust our results \rightarrow look for the onset of changes at low T

Around $T \approx 120$ MeV we have $\Delta \Gamma \approx 10$ MeV \rightarrow comparable with $1/\tau_{fb}$

 \rightarrow Future studies on the η^\prime can be performed in the framework of heavy-ion collisions

Conclusion

Thank you!

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?