Proton halos in Cluster effective field theory

Emil Ryberg, Christian Forssén, Hans-Werner Hammer and Lucas Platter

Chalmers University of Technology

Vetenskapsrådet

(日) (同) (三) (三)

November 12, 2014

Outline	Cluster effective field theory OO OO	

1 Introduction

Effective field theory and proton halos

Cluster effective field theory Charge radii Radiative proton capture

E. Ryberg

What we want to do

- Starting point: Nature is effective.
- Do nuclear physics using effective field theory (EFT).
- Examples of effective degrees-of-freedom:
 - Nucleons and pions (Chiral EFT)
 - Only nucleons (Pionless EFT)
 - Clusters of nucleons (Cluster/Halo EFT)
- Goal: Understand structure and reactions of nuclei (calculate observables).

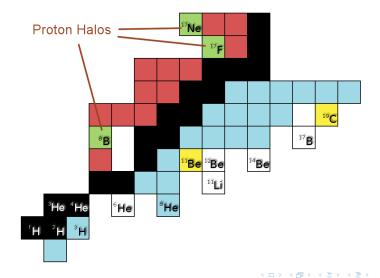
(日) (同) (三) (三)

Effective Field Theory

- Describe the physics up to a certain high-momentum scale $k_{\rm hi}$.
 - Use only relevant degrees-of-freedom.
- The high-energy physics (pions, excited states) is implicitly included in the low-energy coefficients of the effective field theory (EFT).
- Need a separation of scales $k_{\rm lo} \ll k_{\rm hi}$.
- Calculate low-energy observables in a systematic expansion $k_{\rm lo}/k_{\rm hi}$.

<ロ> <同> <同> < 回> < 回>

	Introduction			
	0000	00 00		
Effective field theory and proton halos				


Proton halos

- Hálōs, from ancient Greek. Ring of light around the sun or the moon.
- Halo, in nuclear physics: Loosely bound system consisting of a core and valence nucleons.
- Focus on one-proton halos. Core and proton as effective degrees of freedom.
 - Core defined as cluster of tightly bound nucleons
- Separation of scales present:
 - Separation energy much smaller than excitation energy of core.
- Both particles charged, very low energies
 ⇒ Include Coulomb to infinite order!

< ロ > < 同 > < 回 > < 回 >

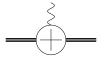
	Introduction 000	Cluster effective field theory OO OO		
Effective field theory and proton halos				

Proton halos

э.

	Cluster effective field theory	
	00 00	

Cluster effective field theory


- Effective degrees-of-freedom in Cluster/Halo EFT:
 - proton and neutron
 - clusters of nucleons (structureless point-particles)
- Need separation of scales:
 - At low enough momentum to not resolve internal structure of cluster.
- Halo physics example:
 - One-nucleon separation energy $~\sim$ 0.1–1 ${\rm MeV}.$
 - Excited states, internal structure $~\sim$ 2–20 ${\rm MeV}.$

Lagrangian for proton and core field:

$$\mathcal{L} = \mathbf{p}^{\dagger} \Big(i \partial_t + \frac{\nabla^2}{2m} \Big) \mathbf{p} + \mathbf{c}^{\dagger} \Big(i \partial_t + \frac{\nabla^2}{2M} \Big) \mathbf{c} + \mathbf{c}^{\dagger} \mathbf{p}^{\dagger} \mathbf{p} \Big[\mathcal{C}_0 + \mathcal{C}_2 \overleftrightarrow{\nabla}^2 + \dots \Big] \mathbf{c}$$

	Cluster effective field theory	
	•• 00	
Charge radii		

Charge form factor

• The charge form factor is defined as

$$rac{1}{Ze}\langle J_{\mathrm{EM}}^0
angle = \mathcal{F}_{\mathrm{C}}(\mathbf{Q}) = 1 - rac{r_{\mathrm{C}}^2}{6}\mathbf{Q}^2 + \dots \; ,$$

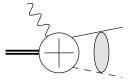
- Photon momentum (momentum transfer) \mathbf{Q} and $\omega = 0$ (off-shell photon in Breit frame).
- Charge radius $r_{\rm C}$: good measure of the size of nucleus.

· < E > < E >

		Cluster effect ○● ○○	tive field theory	
Charge radii				
Charge ra	adius of Borc	on-8		
	<	<	ζ	<

• Charge radius of ⁸B planned to be measured using the atomic isotope shift!

 $) > + < () \\ \hline) > + < () \\ \hline) > + < () \\ \hline)$

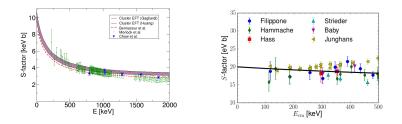

• The leading order Cluster EFT results for the charge radius of ⁸B:

$$r_{\rm C} = 2.5 ~{\rm fm}$$

- EFT error of $\sim 14\%.$
- At the next order there is an undetermined short-range operator ${\rm d}^{\dagger}\left(\nabla^{2}A_{0}\right){\rm d}.$

	Cluster effective field theory	
Radiative proton capture		

Radiative proton capture


- Capture of a proton on a core, while emitting a photon.
- Cross section exponentially suppressed at low energy.
 - Tunnel through the Coulomb barrier.
- Define: Astrophysical S-factor $S(E) = E \exp(2\pi\eta)\sigma_{tot}(E)$.

A B > A B >

Radiative proton capture in Cluster EFT

 ${\rm ^{16}O}(p,\gamma){\rm ^{17}F^*} \qquad {\rm ^{7}Be}(p,\gamma){\rm ^8B}$

A B > A B >

- Low-energy S-factors well described by Cluster EFT.
- Application: Astrophysics and stellar nucleosynthesis!

	Cluster effective field theory	Summary and outlook
	00	

Summary

- Cluster (Halo) EFT
 - Treat the core as an effective degree-of-freedom, structureless.
- Observables considered:
 - Charge radius of ${}^8\mathrm{B}$ (and ${}^{17}\mathrm{F}^*$).
 - Radiative proton capture ${}^{16}\mathrm{O}(\dot{p},\gamma){}^{17}\mathrm{F}^*$ and ${}^{7}\mathrm{Be}(p,\gamma){}^{8}\mathrm{B}.$

Outlook

- 3-body systems
 - Hoyle state of $^{12}\mathrm{C}$
 - \Rightarrow need 3-body Coulomb propagators
 - Two-neutron halo $^{26}\mathrm{O}$ Resonant $^{24}\mathrm{O}+\text{neutron}$ D-wave interaction