Smooth Startup Problem for Innovative Fast Reactor

Working in Nuclear Burning Wave Regime

Oleksiy Fomin

Applied Nuclear Physics, Uppsala University

e-mail: fomax.ua@gmail.com

Svenskt kärnfysikermöte XXXIV

12 November 2014

Uppsala, Sweden

Civilization & Power Consumption

First cave-fire ~ 500 000 years ago : "Chinese Prometheus" Metallurgy: Copper (5 ky BC) \rightarrow Bronze (3 ky BC) \rightarrow Iron (1 ky BC)

From the book: Ian Hore Lacy, "Nuclear Energy in the 21st Century", Elsevier Publ., 2006.

Dynamics of the global consumption of energy resources

www.elsevier.com/locate/energy - "Energy", 2012

Explored Earth reserves of Uranium

Nuclear plants are provided with Uranium-235 only until 2035!

Forecast world demand for Uranium up to 2100

Nuclear Power Problems

• **Closed fuel cycle** (fuel reproduction)

Atomic Bomb House, Hiroshima

- **Ecological problems** (nuclear waste utilization)
- Nonproliferation of fissile materials (nuclear terrorism)

Nuclear chain reaction (Leo Szilárd and Enrico Fermi, 1939)

Neutron lifetime $\tau \sim 10^{-7} s - fast n$ $\tau \sim 10^{-4} \text{ s} - \text{thermal n}$ **Delayed neutrons** $N_{d} < 1\%$, $\Delta t \sim 10 s$ **Neutron multiplication** coefficient *k*_{eff} = 1 !!! Reactivity $\rho = \frac{\kappa_{eff} - 1}{k_{off}} \square 10^{-5}$

Total «nuclear burning» of 1g U ~ 5 tons of coal NPP W = 500 MW 315 kg/d U ~ 7 000 tons of coal per day

Lev Feoktistov (USSR, 1988):

Nuclear Burning Wave

L.P. Feoktistov. Preprint IAE-4605/4, 1988. L.P. Feoktistov. Sov. Phys. Doklady, 34 (1989) 1071.

Concept & Analytical approach

²³⁸U (n, γ) \rightarrow ²³⁹U (β) \rightarrow ²³⁹Np (β) \rightarrow ²³⁹Pu (n,fission) ... T_{1/2} ≈ 2.35 days

<u>Goldin & Anistratov</u> (USSR, 1992): Nuclear Burning Wave **Deterministic approach** V. Goldin, D. Anistratov. Preprint IMM RAS # 43, 1992. U-Pu fuel cycle 1d non-stationary problem

Edward Teller (USA, 1997):	Traveling Wave Reactor	Monte Carlo simulation
_E.Teller. Preprint UCRL-JC-129547, LLNL,199	7. Th-U fuel cycle	
Hiroshi Sekimoto (Japan, 2001)	CANDLE	Deterministic approach
H.Sekimoto et al., Nucl. Sci. Eng., 139 (2001)	306. U-Pu fuel cycle,	Stationary problem: $x = z + Vt$

V. Goldin, D. Anistratov (IAM, Moscow) 1992 : Non-stationary problem !

V. Goldin, D. Anistratov, Preprint IAM AS USSR, # 43, 1992; Mathematical Modelling, 7 (1995) 12.

Nuclear burning wave in FR

S. Fomin et al., Annals of Nuclear Energy, 32 (2005) 1435-1456.

The Wave Exists III

... but it is too high, is not it?!?

2D Non-Stationary Theory of Nuclear Burning Wave

Non-Stationary Nonlinear Multi-Group Diffusion Equation of Neutron Transport $\frac{1}{v^g}\frac{\partial\Phi^g}{\partial t} - \frac{1}{r}\frac{\partial}{\partial r}rD^g\frac{\partial\Phi^g}{\partial r} - \frac{\partial}{\partial z}D^g\frac{\partial\Phi^g}{\partial z} + \left(\Sigma_a^g + \Sigma_{in}^g + \Sigma_{mod}^g - \Sigma_{in}^{g\to g}\right)\Phi^g - \Sigma_{mod}^{g-1}\Phi^{g-1} =$ $= \chi_{f}^{g} \sum_{p'=1}^{G} (v_{f} \Sigma_{f})^{g'} \Phi^{g'} - \sum_{j} \chi_{d}^{j} \sum_{l} \beta_{l}^{j} \sum_{p'=1}^{G} (v_{f} \Sigma_{f})_{l}^{g'} \Phi^{g'} + \sum_{j} \chi_{d}^{j} \sum_{l} \lambda_{l}^{j} C_{l}^{j} + \sum_{g'=1}^{g-1} \Sigma_{in}^{g' \to g} \Phi^{g'}$

Together with Fuel Burn-up Equations and Equations of Nuclear Kinetics

$$\frac{\partial N_l}{\partial t} = -\left(\sum_g \sigma_{al}^g \Phi^g + \Lambda_l\right) N_l + \left(\sum_g \sigma_{c(l-1)}^g \Phi^g + \Lambda_{(l-1)}\right) N_{(l-1)} , \ (l = 1 \div 8); \quad \frac{\partial N_9}{\partial t} = \Lambda_6 N_6$$

of Precursor Nuclei of Delayed Neutrons $\frac{\partial N_{10}}{\partial t} = \sum_{l=1,4,5,6,7} \left(\sum_{g} \sigma_{fl}^{g} \Phi^{g} \right) N_{l} \qquad \qquad \text{CM - Fe (20\%)}$ $j_{\text{ext}} \sim 10^{15} \text{ cm}^{-2} \text{ s}^{-1}$ $\frac{\partial C_l^j}{\partial t} = -\lambda_l^j C_l^j + \beta_l^j \sum_s (v_f^g \Sigma_f^g)_l \Phi^g$

Metal fuel (44%) Pb-Bi coolant (36%) $t_{off} = 400 \text{ days}$

Reactor variant: R=117 cm, L = 500 cm (L_{ig} = 71.17 cm), t_{off} =950 days

2009: NBW reactor with mixed Th-U-Pu fuel cycle

Example:

Metallic fuel 232 Th (62%) + 238 U (48%) volume fraction = 55%, fuel porosity p = 0.65; Coolant (Pb-Bi eutectic) vol. frac. = 30%, Constr. materials (Fe) vol. frac. = 15%; R = 390 cm

Fuel burn-up for Th-U-Pu cycle

Main features of NBW reactor with mixed Th-U-Pu fuel cycle

Reactor composition (vol. frac.): Fuel = 55% ($F_{Th} = 62\%$, p = 0.20), Coolant = 30%, CM = 15%, R = 215 cm

- negative feedback on reactivity intrinsic safety
- long-term (decades) operation without refueling and external control
- possibility of ²³²Th and ²³⁸U utilization as a fuel
- fuel burn-up depth for both 238 U and 232 Th \approx 50%
- neutron flux in active zone $\approx 2.10^{15}$ n/cm²s
- neutron fluence during the whole reactor campaign $\approx 3.10^{24}$ n/cm²
- energy production density in active zone ≈ 200 W/cm³
- total power at the steady-state regime ≈ 1.2 GW
- wave velocity at the steady-state regime ≈ 2 cm/year
- possibility of nuclear waste burn out (expected)

Stability of the NBW Regime

Perturbation of integral neutron flux F_{int} (×10²² cm/s) caused by an external neutron source via time *t* (days). The source with intensity $Q_{ext} = 2 \times 10^{11}$ (cm⁻³ s⁻¹) starts at $t_0 = 3650$ days, lasts during 1 hour and is situated at 160 < *z* < 170 cm

Negative Reactivity Feedback: Stability of the NBW Regime

Evolution of the volume-averaged neutron flux F_{av} (×10¹⁵ cm⁻² c⁻¹) and concentrations N_{av} (×10¹⁷ cm⁻³) of the main fissile and intermediate nuclides in the fuel of mixed ThUPu cycle with time *t* (days) at the initial stage of the neutron flux perturbation $t_0 = 3650$ days. The averaged nuclide concentrations: N_{Np} is for ²³⁹Np, $N_{Pa} = N_{Pa} - 53.1 \cdot 10^{17}$ cm⁻³, $\tilde{N}_{Pu} = N_{Pu} - N_{Pu} i s_0 \text{ for } s_{239} \text{Pu}$, $\tilde{N}_U = N_U - N_U i s_0 \text{ for } s_{239} \text{U}$.

Negative Reactivity Feedback: Stability of the NBW Regime

Variation of the reactivity ρ (dollars) with time *t* (days) along the variation of the volume-averaged neutron flux F_{av} (×10¹⁵ cm⁻² c⁻¹)

Startup problem of the NBW Reactor

Smooth Startup of the NBW Reactor

I believe that we will tame the Feoktistov wave !

... and Nuclear Burning Wave reactor will becomes a "Prometheus of the 3rd Millennium"!

Our publications:

- S. Fomin et al., Annals of Nuclear Energy, 32 (2005) 1435-1456.
- S. Fomin et al., Problems of Atomic Science & Technology, 6 (2005) 106-113.
- S. Fomin et al., Nuclear Science & Safety in Europe. Springer (2006) 239-251.
- S. Fomin et al., Problems of Atomic Science & Technology, 3 (2007) 156–163.
- S. Fomin, Reactor Physics and Technology. PINP WS, St-Perersburg, XL-XLI (2007) 154-198.
- S. Fomin et al., Progress in Nuclear Energy, 50 (2008) 163-169.
- Yu.Mel'nik et al., *Atomic Energy*, 107 (2009) 288-295.
- S. Fomin et al., Progress in Nuclear Energy, 52 (2011) 800-805.

Our conference activity:

- 2005 ICENES (Brussels, Belgium) IC058; NATO-ARW NSSE (Yalta, Ukraine); IAEA-RCM ADS (Minsk, Belarus)
- 2006 ICAPP'06 (Reno, USA) paper 6157; NPAE (Kiev); QEDSP'06 (Kharkov); INES-2 (Yokohama, Japan)
- 2007 ICAPP'07 (Nice, France) paper 7499; WS PINP (St-Perersburg, Russia); IAEA-RCM ADS (Roma, Italy)
- 2008 Channeling'08 (Erice, Italy); NATO-ARW SNE (Yalta, Ukraine) | NPQCD (Dnepropetrovsk, Ukraine)
- 2009 IAEA-RCM ADS (Vienna, Austria), ANIMMA (Marseille, France); Global 2009 (Paris, France) paper 9456
- 2010 IAEA-RCM ADS (Mumbai, India); PINP WS (St-Perersburg, Russia); ICAPP (San Diego, USA) paper 10302 NPAE (Kiev); IAEA-TWG-FR (Brussels, Belgium); 19 ICPRPRMS (Alushta, Ukraine); INES-3 (Tokyo, Japan)
- 2011 IAEA-TWG-FR (Beijing, China); NSC KIPT SS (Alushta, Crimea); QEDSP'11 (Kharkov, Ukraine);

IAEA-TWG-FR (Chinnai, India); IAEA-TWG-FR (Vienna, Austria)

2012 - IAEA-TWG-FR (Vienna, Austria); IAEA-TWG-FR (Argonne, USA); NPAE-4(Kiev, Ukraine); ...

2013 – FR13 (Paris, France)