

NUSTAR activities at FAIR

Nasser Kalantar-Nayestanaki KVI-CART/University of Groningen on behalf of NUSTAR collaboration

SFAIR meeting

Uppsala, Sweden, November 10, 2014

Snapshot of the nuclear landscape

Binding Energies of Oxygen Isotopes

Otsuka, Suzuki, Holt, Schwenk, Akaishi, PRL 105, 032501 (2010)

Ground-state energies

FIG. 5: (Color online) Ground-state energies from CR-CC(2,3) for (a) the NN+3N-induced Hamiltonian starting from the N³LO and N²LOoptimized NN interaction and (c) the NN+3N-full Hamiltonian with $\Lambda_{3N} = 400$ MeV/c and $\Lambda_{3N} = 350$ MeV/c. The boxes represent the spread of the results from $\alpha = 0.04$ fm⁴ to $\alpha = 0.08$ fm⁴, and the tip points into the direction of smaller values of α . Also shown are the contributions of the CR-CC(2,3) triples correction to the (b) NN+3N-induced and (d) NN+3N-full results. All results employ $\hbar\Omega = 24$ MeV and 3N interactions with $E_{3max} = 18$ in NO2B approximation and full inclusion of the 3N interaction in CCSD up to $E_{3max} = 12$. Experimental binding energies [32] are shown as black bars.

S. Binder et al., Phys. Lett. B 736, 119 (2014), http://arxiv.org/pdf/1312.5685.pdf

Nuclear Structure and Reactions within NUSTAR

NUclear STructure Astrophysics and Reactions

NUSTAR Collaboration

>800 registered NUSTAR members 38 countries >180 institutes

NUSTAR Week GSI March 2014

NUSTAR - The Project

Super-FRS	RIB production, identification and high- resolution spectroscopy			
HISPEC/D ESPEC	in-beam \Box spectroscopy at low and intermediate energy, γ -, β -, α -, p-, n-decay spectroscopy	The Approach Complementary measurements		
ILIMA	masses and lifetimes of nuclei in ground and isomeric states	leading to consistent answers		
LASPEC	laser spectroscopy	The Collaboration		
MATS	in-trap mass measurements and decay studies	> 800 scientists		
R ³ B	kinematically complete reactions at high beam energy	> 180 institutes		
Super-FRS	high-resolution studies with high-	38 countries		
SHE	study of Super-Heavy Elements	The Investment		
ELISE	elastic, inelastic, and quasi-free e-A scattering	82 M€Super-FRS 73 M€Experiments		
EXL	light-ion scattering reactions in inverse kinematics			

WISA

Existing research opportunities at GSI

Nuclear Structure and Reactions within NUSTAR

Super-FRS and beam lines

NUSTAR experimental areas

NUSTAR experimental areas

NUSTAR - The Facility

Nuclear Structure and Reactions within NUSTAR

Status Technical Design Reports (35 TDRs)

Approved TDR⁻ (10): HISPEC/DE MONSTER,L MATS + LaSpec R³B (3) (Multiplet, HISPEC/DESPEC (AGA R³B (GLAD) (6) (LYCCA, Plunger, AIDA, BELEN, Usubsystems – except LD-RIS: n ND, CALIFA-barrel) GAS, NEDA) "subsystems – except LD-RIS: no action) Submitted (4): 2014) 1010 1010 1010 TDRs expec (submission profile - 2014 2015 2016 2017 12 3 6 0 0

Status of NUSTAR experiment funding

HISPEC/DESPEC - foreseen instrumentation

HISPEC

- AGATA gamma-tracking spectrometer
- LYCCA heavy-ion calorimeter with ToF capability (Sweden)
- Plunger nuclear level lifetime measurements
- MINOS Proton target
- NEDA Neutron detector array (Sweden)
- HYDE light charged-particle array

DESPEC

- AIDA active implantation device
- MONSTER neutron ToF array
- BELEN neutron detection array
- DTAS Decay Total Absorption Spectrometer
- DEGAS Ge Array gamma spectrometer (Sweden)
- FATIMA Fast TIMing Array

PreSPEC-AGATA 2012-2014: Early Implementation of HISPEC

FRS-detector suite yields A and Z of incoming beam and provides x,y tracking

HECTOR+ Large BaF₂ and LaBr₃ detectors for high-energy γ rays

Advanced Gamma-ray Tracking Array (AGATA) up to 5 x 2+10 x 3 = 40 segmented HP Ge-crystals d ~ 20 cm

ε_{Ph} ≈ 17% ΔE ≈ 0.4%

Lund-York-Cologne CAlorimeter (LYCCA) A and Z particle-ID after secondary target by means of

- x,y tracking
- ∆E-E (Si-CsI)
- Time-of-flight (plastic)

TDR approved 2008

Commissioned, upgraded and used in PreSPEC physics experiments **since 2011**!

Phase 0: S429 B(E2;0⁺ \rightarrow 2⁺) transition strengths in the vicinity of ²⁰⁸Pb

Staged programme:

 Z=82 and N=126 isomers:
 RISING Stopped

 ¹⁹⁸⁻²⁰⁶Pb,
 ²⁰⁶Hg and
 ^{200,202}Pt:
 ²⁰⁸Pb beam GSI

 ²⁰⁸⁻²¹⁴Po,
 ²¹⁰Pb:
 ²³⁸U beam GSI

²⁰⁴Pt, ²⁰⁸Hg, ^{21X}Pb : ²³⁸U

Preliminary 206Hg 1068keV Peak

Phase 1 experiments, n-rich Pb

MATS/LASPEC at the Low Energy Branch (LEB)

TRIGA-SPEC @ Mainz: Prototype of MATS and LASPEC

Mass Measurements at TRIGA-TRAP in 2013 First stage of MATS (View with GSI data)

First experiments with MATS & LaSpec at FAIR Phase 0 → Phase 1

First experiments with MATS & LaSpec at FAIR Phase $0 \rightarrow$ Phase 1

First experiments with MATS & LaSpec at FAIR Phase $0 \rightarrow$ Phase 1

 The accessibility will depend on the^Nperformance of the Super-FRS and the ion-gas catcher (TDR of the ion catcher in preparation)

Collinear laser spectroscopy of doubly-charged fission fragments at IGISOL-4

lear Structure and Reactions within NUSTAR

Multi-Reflection Time-Of Flight Mass Spectrometer

Reactions with Relativistic Radioactive Beams

- 2013 Installation of infrastructure in Cave C for GLAD (He cryo-system, power supply) Delivery and installation of superconducting dipole GLAD (expected Q4/2014)
- 2014 Installation of 20% detectors NeuLAND and CALIFA

Commissioning run in Q3/2014 (This actually happened in Sep./Oct. 2014)

2015/16 Construction and installation of detector components

2017/18 Commissioning of full R3B setup and first physics run at GSI

2019 Installation of experimental setup at FAIR site including superconducting triplet

2020/21 Commissioning and first experiments at Super-FRS

Experiments in 2020/21 will make use of uniqueness of R³B:

- Reactions at high beam energies up to 1 GeV/nucleon
- Tracking and identification capability even for the heaviest ions
- Multi-neutron tracking capability, high-efficiency calorimeter
- Experiments possible for the first time:
- 4 neutron decays beyond the drip-line and for heavier n-rich isotopes
- Kinematically complete measurements of quasi-free nucleon knockout reactions
- Electric dipole and quadrupole response of Sn nuclei beyond N=82,

and of neutron-rich Pb isotopes

Beyond the drip line First observation of ¹⁵Ne ground and excited states

Nuclear Structure and Reactions within NUSTAR

Quasi-free scattering

 $p(^{20}O, pp^{19}N)$

Outgoing Particles

Nuclear Structure and Reactions within NUSTAR

Phase 0: Test Setup@Cave-C – Next steps → Phase 1

- Experiment campaign 2014
- Preparations for GLAD installation
- Full integration test and potential later runs in Cave-C
- Move fully commissioned systems to FAIR high-energy Cave

ILIMA – partial program in CR (NESR not in MSV)

CR perspective view

ToF Detection

How to operate in a ring without an electron cooler?

 \rightarrow Measure velocity and also position simultaneously with two ToF detectors.

Nuclear Structure and Reactions within NUSTAR

Potential for new masses with ILIMA

Super-FRS as an experimental setup

High-resolution spectrometer for relativistic beams

Nuclear Structure and Reactions within NUSTAR

Super-FRS experiments

Super-FRS physics collaboration within NUSTAR formally established

Worldwide unique features:

- energy > 500 MeV/u
- momentum resolution p/∆p ~ 1500 ... 20000
- customized ion-optical modes

Planned experiments will use

- separator stages for high momentum resolution
- intermediate degrader and target stations
- standard equipment + (new)
 ancillary detectors

Super-FRS as:

- high-performance separator for mono-isotopic or cocktail beams
- high resolution spectrometer
- RI beam separator plus reaction spectrometer

Science programme compiled, synergies and overlaps identified

Beyond MSV: NUSTAR program at the NESR

Experiments with stored, electron cooled ion beams

- World-wide unique
- Conceptionally new experiments

ILIMA

- electron cooled beams needed for
 - higher precision and separation (ground and isomeric states)
 - time-resolved studies (unique decay modes, e.g. bound beta decay)
 - studies with pure isomeric beams

ELISe

• Elastic and inelastic electron scattering on RIBs

EXL Elastic and inelastic scattering, reaction with low-momentum transfer
matter distributions, monopole resonances, capture reactions, charge exchange reactions, transfer, knock-out

(n-skins, compressibility, GT-strength, shell evolution, nucl. astrophysics reactions)

Intermediate storage ring activities @ ESR

Elastic p-scattering off ⁵⁶Ni (E105)

Nuclear Structure and Reactions within NUSTAR

Possibility to prepare <100 keV bare ions

reaction-rates measurements in the Gamow window of the **rp-process**

SHE collaboration @ NUSTAR

Nuclear Structure and Reactions within NUSTAR

SHE research will complement NUSTAR scientific program

- Comprehensive approach to study atomic, chemical, and nuclear properties of the heaviest elements (Z > 100)
- versatile cutting-edge setups such as SHIP, SHIPTRAP, TASCA, TASISpec and more ready for experiments
- steps toward realization of high-intensity CW Linac for SHE research underway: accelerator R&D at HIM/GSI/GUF ("demonstrator" funded)

SHE sub-collaboration is formed following endorsement by the NUSTAR collaboration, science case recently submitted.

Spokesperson:Rolf-Dietmar HerzbergDeputy Spokesperson:Michael BlockTechnical Coordinator:Alexander Yakushev

Nuclear Structure and Reactions within NUSTAR

The priorities of NUSTAR for major projects:

(1) Realization of Low-Energy Building;

and *beyond the MSV*:

2 Realization of the return line from CR to ESR;
3 Modification of ESR and building of the Electron ring.

Complementarity of NUSTAR experiments

	Super-FRS	R3B	ILIMA	EXL	ELISE	AIC	HISPEC/DESPEC	MATS	LASPEC
Masses			bare ions,				Q-values, isomers	dressed ions,	
			mapping					highest	
			study					precision	
Half-lives	psns-range		bare ions,				dressed ions,		
			sh				μSS		
Matter radii	interaction x-	matter radii		matter		matter radii			
	sect			densitiy		from			
				distributions		absorption			
Charge radii					charge				mean
					density				square radii
					distribution				
Single-	high	complete	Stored	low			high-resolution		Magnetic
particle	resolution,	kinematics,	isomers	momentum			spectroscopy		moments
structure	angular	neutron		transfers					
	momentum	detection							
Collective		dipole		Monopole	Elelctromag.				Quadrupole
behavior		resonance		resonance	Transitioins				moments

NUSTAR@FAIR

World-wide unique synchrotron-based RIB production for:

- High-energy Radioactive Beams (≤1.5 GeV/u)
 - Efficient production, separation, transmission and detection aided by Lorentz boost
 - Access to the heaviest nuclei without charge-state ambiguities
 - Large range of attainable reaction mechanisms
- Storage rings
 - Mass measurements and beam preparation/manipulation
 - Isomeric beams
 - Novel experimental tools (beyond MSV/with CRYRING, ESR and HESR)

Combined with:

- Wide range of state-of-the-art instrumentation not monolithic!
 - Strong evolution from existing programs
 - Dynamic progress in terms of TDRs/construction/operation
 - Some NUSTAR FAIR experiments could already start in 2017/2018

Comprehensive map of nuclear landscape

Thank you!