The exciting physics with exotics

Ulrich Wiedner

(Ruhr-University Bochum)

Standard Model of

FUNDAMENTAL PARTICLES AND INTERACTIONS

The Standard Model summarizes the current knowledge in Particle Physics. It is the quantum theory that includes the theory of strong interactions (quantum chromodynamics or QCD) and the unified theory of weak and electromagnetic interactions (electroweak). Gravity is included on this chart because it is one of the fundamental interactions even though not part of the "Standard Model."

FERMIONS

Leptons $\operatorname{spin}=1 / 2$		
Flavor	Mass $\mathrm{GeV} / \mathrm{c}^{2}$	Electric charge
$\nu_{\mathrm{e}} \begin{gathered}\text { electron } \\ \text { neutrino }\end{gathered}$ e electron	$\begin{array}{\|c\|} <1 \times 10^{-8} \\ 0.000511 \end{array}$	-1
$\boldsymbol{V}_{\boldsymbol{\mu}} \begin{gathered}\text { meutrino } \\ \text { muon }\end{gathered}$ $\boldsymbol{\mu}$ muon	$\begin{array}{r} <0.0002 \\ 0.106 \end{array}$	-1
$\begin{aligned} & \nu_{\tau} \tau_{\text {neutrino }}^{\text {tau }} \\ & \tau \text { tau } \end{aligned}$	<0.02 1.7771	-1

matter constituents
spin = 1/2, 3/2, 5/2,

Quarks spin = 1/2		
Flavor	Approx Mass GeV/c ${ }^{2}$	Electric charge
u up d down	$\begin{aligned} & 0.003 \\ & 0.006 \end{aligned}$	$\begin{gathered} 2 / 3 \\ -1 / 3 \end{gathered}$
C charm S strange	1.3 0.1	$\begin{gathered} 2 / 3 \\ -1 / 3 \end{gathered}$
t top b bottom	175 4.3	$2 / 3$ $-1 / 3$

Spin is the intrinsic angular momentum of particles. Spin is given in units of \hbar, which is the quantum unit of angular momentum, where $\left\lceil=h / 2 \pi=6.58 \times 10^{-25} \mathrm{GeV} \mathrm{V}=1.05 \times 10^{-34} \mathrm{~J} \mathrm{~s}\right.$. Electric charges are e given in units of the proton's charge. In SI units the electric charge of the proton is 1.60×10^{-19} coulombs.
The energy unit of particle physics is the electronvolt (ev), the energy gained by one electron in crossing a potential difference of one volt. Masses are given in $\mathrm{GeV} / \mathrm{I}^{2}$ (remember
$E=m \mathrm{c}^{2}$, where $1 \mathrm{GeV}=10^{\circ} \mathrm{eV}=1.60 \times 10^{-10}$ joule. The mass of the proton is $0.938 \mathrm{GeV} / \mathrm{c}^{2}$ $E=m c^{2}$, where $1 \mathrm{GeV}=10^{9} \mathrm{eV}=1.60 \times 10^{-10} \mathrm{joule}$. The mass of the proton is $0.938 \mathrm{GeV} / \mathrm{c}^{2}$
$=1.67 \times 10^{-27} \mathrm{~kg}$.

If the protons and neutrons in this picture were 10 cm across
then the quarks and electrons \mathbf{l} would be besser than $\mathbf{c m a} \mathbf{0}$ across
size and the entire atom would be about 10 km across.

Baryons 999 and Antibaryons $\overline{999}$ Baryons are fermionic hadrons. There are about 120 types of baryons.					
Symbol	Name	Quark content	Electric charge	$\begin{gathered} \text { Mass } \\ \mathrm{GeV} / \mathrm{c}^{2} \end{gathered}$	Spin
p	proton	uud	1	0.938	1/2
$\overline{\mathbf{p}}$	anti- proton	$\bar{u} \bar{u} \bar{d}$	-1	0.938	1/2
n	neutron	udd	0	0.940	1/2
\}	lambda	uds	0	1.116	1/2
Ω^{-}	omega	sss	-1	1.672	3/2

Matter and Antimatter

For every particle type there is a corresponding antiparticle type, denotFor every particle type there is a corresponding antiparticle type, denct
ed by a bar over the particle symbol (unless + or -charge is shown).
Particle and antiparticle have identical mass and spin but opposite Particle and antiparticle have identical mass and spin but opposite Particle and antiparticle have identical mass and spin but opposite
charges. ${ }^{\circ}$.me electricaly neutral bosons (e.g. z^{0}, γ, and $\eta_{\mathrm{c}}=\bar{c}$, but not
$K^{0}=\mathrm{d} \overline{\mathrm{s}}$) are their own antiparticles.

Figures
Figures
These diagrams are an artist's conception of physical processes. They are These diagrams are an artist's conception of physical processes. They are
not exact and have no meaningut scale. Green shaded areas represent
the cloud of gluons or the gluon field, and red lines the quark paths.

The Particle Adventure
Visit the award-winning web feature The Particle Adventure at
http://ParticleAdventure.org
This chart has been made possible by the generous support of: U.S. Department of Energy
U.S. National Science Foundation

Lawrence Berkeley National Laboratory
Stanford Linear Accelerator Center
American Physical Society, Division of Particles and Fields
Aminle industries, inc
Q2000 Contemporary Physics Education Project. CPEP is a non-profit organiza-
tion of teachers, physicist, and educators. Send mail to: CPPP. MS 50-308, tion of teachers, physticts, and educators. Send mail to: CPPP, MS $50-308$, Lawrence
Berkeley National Laboratory, Berkeley, CA, 94720 . For information on charts, text materit's hands cossroom activities, and workshops, see.

FUNDAMENTAL PARTICLES AND INTERACTIONS

The Standard Model summarizes the current knowledge in Particle Physics. It is the quantum theory that includes the theory of strong interactions (quantum chromodynamics or QCD) and the unified
theory of weak and electromagnetic interactions (electroweak). Gravity is included on this chart because it is one of the fundamental interactions even though not part of the "Standard Model."

FERMIONS

Leptons spin $=1 / 2$		
Flavor	Mass $\mathrm{GeV} / \mathrm{c}^{2}$	Electric charge
$\nu_{\mathrm{e}}^{\text {electron }}$ neutrino e electron	$\begin{aligned} & <1 \times 10^{-8} \\ & 0.000511 \end{aligned}$	-1
$\boldsymbol{v}_{\boldsymbol{\mu}}$ meutrino $\boldsymbol{\mu}$ muon	<0.0002 0.106	-1
$\boldsymbol{v}_{\tau} \boldsymbol{t}_{\text {neutrino }}^{\text {tau }}$	<0.02	0

matter constituents
spin $=1 / 2,3 / 2,5 / 2$,

Quarks spin $=1 / 2$		
Flavor	Approx. Mass $\mathrm{GeV} / \mathrm{c}^{2}$	Electric charge
U up	0.003	$2 / 3$
d down	0.006	$-1 / 3$
C charm	1.3	$2 / 3$
S strange	0.1	$-1 / 3$
\mathbf{t} top	175	$2 / 3$

BOSONS

| Unified Electroweak | | |
| :---: | :---: | :---: | spin = 19.

force carriers $\operatorname{spin}=0,1,2$,
 cally-charged particles interact by exchanging photons, in strong interactions color-charged particles interact by exchanging gluons. Lep
interactions and hence no color charge.

Quarks Confined in Mesons and Baryons

One cannot isolate quarks and gluons; they are confined in color-neutral particles called hadrons. This confinement (binding) results from multiple exchanges of gluons among the color-charged constituents. As color-charged particles (quarks and gluons) move apart, the energy in the color-force field between them increases. This energy eventually is converted into additional quark-antiquark pairs (see figure below). The quarks and antiquarks then combine into hadrons; these are the particles seen to emerge. Two types of hadrons have been observed in nature: mesons $q \bar{q}$ and baryons $q q q$.

$\mathbf{\rho}$	proton	Uud	-1	0.938	$1 / 2$
\mathbf{n}	neutron	udd	0	0.940	$1 / 2$
$\boldsymbol{\Lambda}$	lambda	uds	0	1.116	$1 / 2$
$\mathbf{\Omega}^{-}$	omega	SSS	-1	1.672	$3 / 2$

Strength relative to electromag	$10^{-18} \mathrm{~m}$	10^{-41}	0.8	1	25	Not applicable
for two u quarks at:	$3 \times 10^{-17} \mathrm{~m}$	10^{-41}	10^{-4}	1	60	to quarks
two protons in nucleus		10^{-36}	10^{-7}	1	Not applicable	20

\boldsymbol{N}^{+}	kaon	su	$-1,494$	0	
$\boldsymbol{\rho}^{+}$	rho	$\mathbf{u} \overline{\mathbf{d}}$	+1	0.770	1
$\mathbf{B}^{\mathbf{0}}$	B-zero	$\mathbf{d} \overline{\mathbf{b}}$	0	5.279	0
$\boldsymbol{\eta}_{\mathbf{C}}$	eta-c	$\mathbf{c} \overline{\mathbf{C}}$	0	2.980	0

Matter and Antimatter
For every particle type there is a corresponding antiparticle type, denoted by a bar over the particle symbol (unless + or - charge is shown)
Particle and antiparticle have identical mass and spin but opposite charges. Some electrically neutral bosons (e.g., z^{0}, γ, and $\eta_{c}=c \bar{c}$, but not
$\kappa^{0}=d \bar{S}$) are their own antiparticles. $\mathrm{K}^{0}=\mathrm{ds}$) are their own antiparticles.

Figures
These diagrams are an artist's conception of physical processes. They are
not exact and have no meaningtul scale. Green shaded areas represent not exact and have no meaningful scale. Green shaded areas represent
the cloud of gluons or the gluon field, and red lines the quark paths.

The Particle Adventure
Visit the award-winning web feature The Particle Adventure at
http:// articleAdventure.org
This chart has been made possible by the generous support of: U.S. Department of Energy
U.S. National Science Foundation

Lawrence Berkeley National Laboratory
Stanford Linear Accelerator Center
American Physical Society, Division of Particles and Fields
BURIE INDUSTRIES, INC.
Q2000 Contemporary Physics Education Project. CPEP is a non-profit organiza-
tion of teachers, physicists, and educators. Send mail to: CPEP. MS 50-308, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720. For information on charts, text materials, hands-on classroom activities, and workshops, see http://CPEPweb.org

Positronium

Charmonium

X and Y mesons

\Leftarrow About 298000 results (0.22 seconds)

```
Everything The X(3872) particle - The DZero Experiment - Fermilab www-d0.fnal.gov/Run2Physics/WWW/results/final/B/.../B04A.htm
```

```
Apr 15, 2004 - The \(\mathbf{X}(\mathbf{3 8 7 2}\) ) particle -- What is it? April 15 ... Some theories have predicted that the \(\mathbf{X}(\mathbf{3 8 7 2})\) is a new type of particle called a meson-molecule
[PDF] D (2700), D (2860) and the open-charm system X(3872): molecu... web.na.infn.it/fileadmin/b-physics-workshop-2/.../colangelo.pdf
File Format: PDF/Adobe Acrobat - Quick View
sJ. (2860) and the open-charm system. X(3872): molecule vs charmonium with Fulvia De Fazio, Rossella Ferrandes, Floriana Giannuzzi and Stefano Nicotri ..
X (3872) as a DD* molecule bound by quark exchange forces arxiv.org > hep-ph
by C Pena - 2011 - Related articles
Dec 31, 2011 - Abstract: The Bethe-Salpeter equation for the T-Matrix of D-D* scattering is solved with a meson-meson potential that results from 2nd order ...
The X (3872) boson: Molecule or charmonium
arxiv.org > hep-ph
by M Suzuki-2005 - Cited by 103 - Related articles
Aug 24, 2005 - Abstract: It has been argued that the mystery boson \(\mathbf{X}(\mathbf{3 8 7 2})\) is a
molecule state consisting of primarily D0-D0*bar + D0bar-D*0. In contrast ...
```

Spin-parity analysis of the $\mathbf{X}(\mathbf{3 8 7 2})$ «A Quantum Diaries Survivor
dorigo.wordpress.com/2006/06/.../spin-parity-analysis-of-the-x3872/
Jun 9, 2006 - Two possible spin-parity assignments of the $\mathbf{X}(\mathbf{3 8 7 2})$ are equally probable: in particular, the X may be indeed a molecular bound state of two ...

Phys. Rev. D 72, 114013 (2005): X(3872) boson: Molecule or ...
link.aps.org > Journals > Phys. Rev. D > Volume 72) Issue 11
by M Suzuki - 2005 - Cited by 103 - Related articles
Dec 19, 2005 - It has been argued that the mystery boson $\mathbf{X}(\mathbf{3 8 7 2})$ is a molecule state consisting of primarily $D 0 \overline{\mathrm{D}} * 0+\overline{\mathrm{D}} 0 \mathrm{D}^{*} 0$. In contrast, apparent puzzles ...

Charm meson molecules and the $\mathbf{X}(3872)$
drc.ohiolink.edu/.../7166?...X(3872)...1..
Title: Charm meson molecules and the X(3872). Author: Kusunoki, Masaoki Description: The recently discovered resonance $\mathbf{X}(\mathbf{3 8 7 2})$ is interpreted as a ..

PROPERTIES OF X(3872) AS A HADRONIC MOLECULE WITH A ... www.worldscinet.com/ijmpcs/02/0201/.../S2010194511000857.pdf
by MARADA - Related articles

BESIII

BESIII data quality

$$
\psi^{\prime} \rightarrow \gamma \mathrm{X}
$$

The X(3872)

X(3872)

$\mathrm{B} \rightarrow K X ; p \bar{p}$	$\mathrm{~J}^{\mathrm{PC}}=?\left(1^{++)}\right.$
$\mathrm{X} \rightarrow \pi^{+} \pi^{-} J / \psi$	$\mathrm{M}=3871.68 \pm 0.17 \mathrm{MeV}$
$\mathrm{X} \rightarrow \pi^{+} \pi^{-} \pi^{0} J / \psi$	$\Gamma<1.2 \mathrm{MeV}$
$\mathrm{X} \rightarrow \gamma J / \psi ; X \rightarrow \gamma \psi(2 S)$	$>10 \sigma$
$\mathrm{X}(3875) \rightarrow D^{0} \bar{D}^{0} \pi^{0}$	

CMS: PoS EPS-HEP2011 (2011) 177

EPJC 72, 1972 (2012)

Observed decay $\mathrm{X}(3872) \rightarrow \gamma \mathrm{J} / \psi: \Rightarrow \mathrm{C}=+$

2013: LHCb

PRL 110 (2013) 222001

$$
\begin{aligned}
& \mathrm{J}^{\mathrm{PC}}=1^{++} \text {compatible } \\
& \mathrm{J}^{\mathrm{PC}}=2^{++} \text {rejected }>8 \sigma
\end{aligned}
$$

What is the nature of the $\mathrm{X}(3872)$?

arXiv:1404.0275 (2014)

$$
R_{\gamma \psi}=\frac{\boldsymbol{B}(X(3872) \rightarrow \psi(2 S) \gamma)}{\boldsymbol{\mathcal { B }}(X(3872) \rightarrow J / \psi \gamma)}=2.46 \pm 0.64 \pm 0.29
$$

This agrees more with models favoring a charmonium state or a mixture of a charmonium/molecular state solutions than with a pure molecular interpretation.
... but still likely to be exotic:
$\left.\begin{array}{l}\text { Di-pion mass is dominated by the } \rho(770) \Rightarrow \mathrm{I}=1 \\ \text { BELLE and BaBar see decay } \mathrm{X}(3872 \rightarrow \mathrm{~J} / \psi \omega\end{array}\right\}$ Ratio $\sim 1 \sim$ huge isospin violation

How to progress further in the understanding of the new states?
It is important to determine the resonance curve precisely ...

The line shapes for virtual state and bound state are the same above threshold but differ dramatically below threshold.

Analysis of $J / \psi \pi^{+} \pi^{-}$and $D^{0} \bar{D}^{0} \pi^{0}$ Decays of the $X(3872)$
Eric Braaten and James Stapleton
Physics Department, Ohio State University, Columbus, Ohio 43210, USA
(Dated: July 17, 2009)
Phys.Rev. D81 (2010) 014019

The PANDA Detector

Resonance scan with varying $\overline{\mathrm{p}}$ momentum at PANDA
(possible for states with all quantum numbers)

Measure rate of final state under study:

$$
\mathrm{R}_{\mathrm{i}}=\mathrm{L}_{0} \cdot \sigma\left(\mathrm{p}_{\mathrm{i}}\right) \cdot \mathrm{K}\left(\Delta \mathrm{p} / \mathrm{p},\left|\mathrm{p}_{\mathrm{i}}-\mathrm{p}_{\mathrm{R}}\right|\right)
$$

(K takes overlap between beam and resonance into account)

F̈ande MC studies

PANDA reconstruction of $\mathrm{X}(3872)$ mass and width

BELLE II:

An advanced width determination using measured masses, the beam energy and momentum of the B allowed BELLE to reduce the width determination from originally $<2.4 \mathrm{GeV}$ to $<1.2 \mathrm{GeV}$ in a 3-dimensional fit (Phys. Rev. D84(2011)052004).

With the higher statistics (350 events expected for the $\mathrm{X}(3872$) in 2020) in BELLE II $\Gamma<110 \mathrm{keV}$ might be achievable (S. Lange - FAIR conference Worms 2014).

A precise determination of the resonance curve form is not possible in BELLE.

The Y story

Using ISR (Initial State Radiation) to find states:

BELLE (initial results)

The respective cross sections:

BELLE: PRL110, 252002 (2013).

BaBar: PRD86, 051102 (2013).

$\mathrm{Y}(4260): \mathrm{M} \approx 4260 \mathrm{MeV}, \Gamma \approx 100 \mathrm{MeV}$
Conventional wisdom and potential models: charmonia above threshold decay to open charm

$$
\psi(4040), \psi(4160), \psi(4415)
$$

The $\mathrm{Y}(4260)$ has a large decay width to $\pi^{+} \pi^{-} \mathrm{J} / \psi$

1 mm

Are there connections between X and Y particles?

BESIII

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma \pi^{+} \pi^{-} \mathrm{J} / \psi
$$

Observation of the $\mathrm{X}(3872)$ in the radiative decay of the $\mathrm{Y}(4260)$

BESIII: PRL112, 092001 (2014).

Fit incl. the resonance, an E1-transition phase space and a linear background

What does nature want to tell us?

Additional members of the ISR Y family seen by BELLE and BaBar:

All states have $\mathrm{J}^{\mathrm{PC}}=1^{--}$ Nature ???

The first obvious exotic: $Z(4430)$

$\mathrm{Z}^{+}(4430)$ - a new state of matter (tetraquark) decaying into $\pi^{+} \psi^{\prime}$

$$
\begin{aligned}
\mathrm{M} & =(4.433 \pm 0.004(\mathrm{stat}) \pm 0.001(\mathrm{syst})) \mathrm{GeV} \\
\Gamma & =\left(0.044_{-0.01}^{+0.017}(\mathrm{stat})_{-0.01}^{+0.030}(\mathrm{syst})\right) \mathrm{GeV} \\
& B\left(B \rightarrow K Z(4430) \times \mathcal{Z}\left(Z \rightarrow \pi^{+} \psi^{\prime}\right)=(4.1 \pm 1.0(\text { stat }) \pm 1.3(\text { syst })) \times 10^{-5}\right.
\end{aligned}
$$

PRL 100, 142001 (2008)

Confirmation by LHCb

$$
\begin{aligned}
& \mathrm{M}=4475 \pm 7_{-25}^{+15} \mathrm{MeV} \\
& \Gamma=172 \pm 13_{-34}^{+37} \mathrm{MeV}
\end{aligned}
$$

Significance: $>13.9 \sigma$

PANDA: $\overline{\mathrm{p}} \mathrm{p} \rightarrow \mathrm{Z}^{+}(4430)+\pi^{-}$

$$
\begin{aligned}
& \mathrm{Y}(4260) \rightarrow \pi^{+} \pi^{-} \mathrm{J} / \psi \rightarrow \pi^{+} \pi^{-} \mathrm{e}^{+} \mathrm{e}^{-}\left(\pi^{+} \pi^{-} \mu^{+} \mu^{-}\right): \\
& \text {Straightforward analysis with } 4 \text { tracks }
\end{aligned}
$$

BESIII

Observation of the $\mathrm{Z}_{\mathrm{c}}(3900)$ in BESIII

Observation of $\mathrm{Z}_{\mathrm{c}}(3900)$ at BESIII

Observation of $\mathrm{Z}_{\mathrm{c}}(3885)$ in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{-}\left(\mathrm{D}^{*} \mathrm{D}\right)^{+}$

Phys. Rev. Lett 112, 022001 (2014) / 1310.1163

$$
\begin{gathered}
\mathrm{M}=3883.9 \pm 1.5 \pm 4.2 \mathrm{MeV} ; \Gamma=24.8 \pm 3.3 \pm 11.0 \mathrm{MeV} \\
\mathrm{Z}_{\mathrm{c}}(3885)=\mathrm{Z}_{\mathrm{c}}(3900) \text { but large yield of } \sim 6 \text { for } \frac{\Gamma\left(D D^{*}\right)}{\Gamma\left(\pi^{ \pm} J / \psi\right)}
\end{gathered}
$$

BESIII

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi \mathrm{Z}_{\mathrm{c}}(4020) \rightarrow \pi^{+} \pi^{-} \mathrm{h}_{\mathrm{c}}
$$

BESIII: 1309.1896
$8.7 \pm 1.9 \pm 2.8 \pm 1.4 \mathrm{pb} @ 4.230$
$7.4 \pm 1.7 \pm 2.1 \pm 1.2 \mathrm{pb} @ 4.260$
$10.3 \pm 2.3 \pm 3.1 \pm 1.6 \mathrm{pb} @ 4.360$

Simultaneous fit to $4.23 / 4.26 / 4.36 \mathrm{GeV}$ data, $16 \eta_{\mathrm{c}}$ decay modes:

$$
\mathrm{M}=4022.9 \pm 0.8 \pm 2.7 \mathrm{MeV} / \mathrm{c}^{2} \quad \Gamma=7.9 \pm 2.7 \pm 2.6 \mathrm{MeV}
$$

BESIII

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi \mathrm{Z}_{\mathrm{c}}(4025) \rightarrow \pi^{-}\left(\mathrm{D}^{*} \overline{\mathrm{D}}^{*}\right)^{+}
$$

BESIII: 1308.2760
Fit to $\pi^{ \pm}$recoil mass yields

$$
\begin{aligned}
& 401 \pm 47 \mathrm{Zc}(4025) \text { events } \Rightarrow>10 \sigma \\
& \mathrm{M}\left(\mathrm{Z}_{\mathrm{c}}(4025)\right)=4026.3 \pm 2.6 \pm 3.7 \mathrm{MeV} \\
& \Gamma\left(\mathrm{Z}_{\mathrm{c}}(4025)\right)=24.8 \pm 5.6 \pm 7.7 \mathrm{MeV}
\end{aligned}
$$

BCSIII $\quad \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi \mathrm{Z}_{\mathrm{c}}(4025) \rightarrow \pi^{-}\left(\mathrm{D}^{*} \overline{\mathrm{D}}^{*}\right)^{+}$
BESIII: 1308.2760

Fit to $\pi^{ \pm}$recoil mass yields $401 \pm 47 \mathrm{Zc}(4025)$ events $\Rightarrow>10 \sigma$ $\mathrm{M}\left(\mathrm{Z}_{\mathrm{c}}(4025)\right)=4026.3 \pm 2.6 \pm 3.7 \mathrm{MeV} ; \Gamma\left(\mathrm{Z}_{\mathrm{c}}(4025)\right)=24.8 \pm 5.6 \pm 7.7 \mathrm{MeV}$

$$
R=\frac{\sigma\left(e^{+} e^{-} \rightarrow \pi^{ \pm} Z_{c}^{\mp}(4025) \rightarrow \pi^{ \pm}\left(D^{*} \bar{D}^{*}\right)^{\mp}\right)}{e^{+} e^{-} \rightarrow \pi^{ \pm}\left(D^{*} \bar{D}^{*}\right)^{\mp}}=(65 \pm 9 \pm 6) \%
$$

Notes from the Editors: Highlights of the Year

Published December 30, 2013 | Physics 6, 139 (2013) | DOI: 10.1103/Physics.6.139
Physics looks back at the standout stories of 2013.

As 2013 draws to a close, we look back on the research covered in Physics that really made waves in and beyond the physics community. In thinking about which stories to highlight, we considered a combination of factors: popularity on the website, a clear element of surprise or discovery, or signs that the work could lead to better technology. On behalf of the Physics staff, we wish everyone an excellent New Year.

- Matteo Rini and Jessica Thomas

Four-Quark Matter

Quarks come in twos and threes-or so nearly every experiment has told us. This summer, the BESIII Collaboration in China and the Belle Collaboration in Japan reported they had sorted through the debris of high-energy electron-positron collisions and seen a mysterious particle that appeared to contain four quarks. Though other explanations for the nature of the particle, dubbed $Z_{c}(3900)$, are possible, the "tetraquark" interpretation may be gaining traction: BESIII has since seen a series of other particles that appear to contain four quarks.

Images from popular Physics stories in 2013

Article Options

\& Printable VersionShare/Email This
3 Export Citation (BibTeX)
. Export Citation (RIS)

New in Physics

Crisis Averted for the Bose Glass Synopsis | Jun 3, 2014
Unexpected Impact from MediumSized Solar Flare Synopsis | Jun 2. 2014
Scalable Imaging of
Superresolution
Viewpoint | Jun 2, 2014
Electrons Not the Cause of Charged Grains Focus|May 30. 2014
Seeing Just One Photon Synopsis | May 29, 2014

BESIII

Search for neutral partner of the $\mathrm{Z}_{\mathrm{c}}(3900): \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{0} \pi^{0} \mathrm{~J} / \psi$

- Fits to 10 data sets at different scan energies
- BW signal convolved with resolution
- Background $1^{\text {st }}$ order polynomial

BESIII

Search for neutral partner of the $\mathrm{Z}_{\mathrm{c}}(3900): \mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{0} \pi^{0} \mathrm{~J} / \psi$

M: $3894.8 \pm 2.3 \mathrm{MeV}$
$\Gamma: 29.6 \pm 8.2 \mathrm{MeV}$
Significance: 10.4σ

A new class of particles have been observed:

- At least 4-quarks
- Charged
- Close to DD thresholds
- They couple to DD final states larger than to charmonia

4-quark state
 D-D."'molecule"

Transition from color forces to colorless nuclear forces ?

The future: PANDA
Proton-Antiproton contains already a 4-Quark-System

Idea: Dilepton-Tag from Drell-Yan-Production

Advantages

- Trigger
- less JPC-Ambiguities
-1200 E./day @ 12 GeV
- 300 E./day @ $5-8 \mathrm{GeV}$ antiproton-Beam (for $\mathrm{L}=10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$)

Bannikov, Gornuschkin, Kopeliovich, Krumshtein and Sapozhnikov, JINR E1-92-344 (1992)

Other QCD states: Glueballs

A possible glueball spectrum

Glueballs \rightarrow Creation of Mass

A few \% of a hadron (proton) mass is generated due to the Higgs mechanism.

Most of the proton mass is created by the strong interaction.

Glueballs gain their mass solely by the strong interaction and are therefore an unique approach to the mass creation by the strong interaction.

The structure of glueballs

Glueball (gg)

Are glueballs configurations of twisted or knotted colored flux?

GLUEBALLS, FLUXTUBES AND $\eta(1440)$.
L. Fadeev, A. Niemi and U. Wiedner Phys.Rev.D70:114033, 2004

Open Strings

representing gauge theories

Closed Strings

String World

representing gravitation

Hadron World

meson

glueball?

Glueballs on Regge trajectories like mesons?

Marco Bochicchio; arXiv:1308.2925
Harvey B. Meyer, Michael J. Teper; Phys.Lett. B605 (2005) 344-354
G. S. Bali et al.; arXiv:1302.1502

Hadron physics is the place on earth to study non-Abelian massless gauge boson - gauge boson interaction in a controlled manner.

Feynman lectures on gravitation:

In fact, his work led to two sets of very useful results. The first, purely pedagogical, is embodied in the Feynman Lectures on Gravitation (publication [123]). In those lectures, Feynman develops the quantum field theory of a neutral massless spin 2 particle (the graviton), emphasizing the special features that arise, in comparison to theories of spin 0 and spin 1 particles, as well as the complications that result for a zero-mass particle in trying to create a self-consistent theory. As in the case of spin 1, masslessness results in redundant degrees of freedom, since Lorentz invariance requires that a massless particle can spin only along or opposite to its direction of momentum (positive or negative chirality), while a massive spin 2 particle may take up five different orientations relative to any arbitrary quantization direction. Eliminating the unwanted degrees of freedom is achieved by imposing certain "gauge conditions," which in the gravitational case brings about nonlinearity in the form of graviton-graviton interaction. Feynman shows that the classical limit of a properly gauged massless spin 2 theory is described by the Einstein gravitational field equations. ${ }^{3}$

The difference between $\mathrm{e}^{+} \mathrm{e}^{-}$colliders and PANDA

There exist also very narrow charged Z_{b} states

$$
\begin{aligned}
& \mathrm{M}_{1}=10607.2 \pm 2.0 \mathrm{MeV} \\
& \Gamma_{1}=18.4 \pm 2.4 \mathrm{MeV} \\
& \mathrm{M}_{\mathrm{Zb}}-\left(\mathrm{M}_{\mathrm{B}}+\mathrm{M}_{\mathrm{B}^{*}}\right)=+2.6 \pm 2.1 \mathrm{MeV} \\
& \mathrm{M}_{2}=10652.2 \pm 1.5 \mathrm{MeV} \\
& \Gamma_{2}=11.5 \pm 2.2 \mathrm{MeV} \\
& \mathrm{M}_{\mathrm{Zb}}-\left(\mathrm{M}_{\mathrm{B}}+\mathrm{M}_{\mathrm{B}^{*}}\right)=+1.8 \pm 1.7 \mathrm{MeV}
\end{aligned}
$$

Ulrich Wiedner

Thank you very much for your attention.

