

R3B Start version 2016

Lund

EMMI-TUD

CALorimeter for In Flight detection of γ-rays and light charged pArticles A versatile detector for a multi-purpose experiment → Huge dynamic range (γ: 100 keV - 20 MeV and p: 1-320 MeV)

It sourounds the R3B target. The inner volume of CALIFA is occupied by a very complex Si Tracker system.

R3B has a very broad experimental program:

- Nuclear structure far from stability
- Fission studies
- Reactions of astrophysical interest
- EOS of asymmetric nuclear matter

CALIFA would be a key detector in many of these studies.

The required functionality of CALIFA will vary greatly from one case to another.

rer	Intrinsic photopeak efficiency	40% (up to Eɣ=15 MeV projectile frame)	 Performant scintillator materials and photosensors (CsI(TI) + LAAPD)
Spectrometer Calorimet	Gamma sum energy	< 10% for 5 γ rays of 3 MeV	 Granular detector: Few thousands of finger-like crystals
	resolution $\Delta(E_{\gamma}sum)/<(E_{\gamma}sum)>$		 Minimum dead volume: compact arrangement + carbon fiber alveoli support
	Calorimeter for high energy Light charged particles	Up to 320 MeV in lab system	 The geometrical design is governed by the kinematics of particles emitted by relativistic sources
	Gamma energy resolution	~5-6% (FWHM at Eγ=1 MeV)	 The detector is splited into a Barrel (backward angles) and a Forward Endcap (forward angles)
	Light charged particles resolution	~2%	
	Proton-γ ray separation	For 1 to 30 MeV	

$\frac{1}{2}$ **CAL**orimeter In Flight detection of γ and charged pArticles \mathbb{R}^{2}

> Design dominated by the kinematics of particles emitted by relativistic sources

- > The detection of low energy g-rays together with high energy charged-particles
- \rightarrow huge dynamic range

Detector splits in two sections : BARREL and ENDCAP

> Technical challengies

• Performant scintillator materials (CsI(Tl), phsw LaBr/LaCl) and photosensors adapted to the different needs over the angular range

- Granular detector: few thousands of finger-like crystals
- Minimum dead volume: compact arrangement + carbon fiber alveoli support

ENDCAP TDR expected end of 2014

CALIFA Barrel

- Long CsI(Tl) (up to 22cm long) readout with LAAPD (10x20 mm)
- Energy resolutions for this geometry $(\sim 5\% \text{ at } 1 \text{ MeV } \gamma)$
- Good resolutions for fully stop protons (up to 320 MeV)

• Construction starts in 2013 DEMONSTRATOR Phase (20% of the Final detector)

Technical specifications fixed

Purchase of the elements to built the CALIFA first stage initiated in 2013. Construction in progress(DEMONSTRATOR)

Long CsI(TI) crystals + Large Area Avalanche Photodiodes (LAAPD)

AMCRYS

HAMAMATSU S8664-1010-2CH

CALIFA Barrel Mechanics

Individual crystals grouped by4 in the Carbon Fiber based mechanical structure 'alveolus' 300um thickness Alveolis grouped by 8 to share one cover 'tile', which serves as interface

Implementation in three layers

Based on 3 independet layers combining analogue and digital solutions

✓ **Preamplification** : mounted directly at the detector (optimized for low noise and low power consumption and simple mechanical access)

✓ **Digitizers** modules located on the movable support of the detector. They perform full signal processing and provide buffer memory for an asynchronoues data collection.

✓ **DAQ** electronics based on MBS and GOSIP protocol.

Mesytec MPRB-32

- 2x 16 channel charge-sensitive preamp (dual range 3/30 pC)
- Individual voltages up to 600V
- Gain stabilization
- Remote control

FEBEX3

- 16 channel pipeline ADC Front End Board with optical link EXtension.
- ADC sampling rate 65 Ms/s, resolution is 12 bit.
- Trigger logic, time stamp logic and external clock input to high precision PLL synthesizer.

CALIFA Barrel gain monitoring

- Nichia green LED (525nm)
- Diffusing glass
- 2 fibers per double APD

- Desiccator Cabinets
- Climate control
- Humidity control, RH ~ 4-5%
- UV protected
- P₂O₅ desiccant (phosphorus pentoxide)

CALIFA crystal testing station @LU-DetLab

Climate chamber with XY table

- Up to 32 CsI can be mounted
- Integrated standard CALIFA preamp
- All types of CALIFA CsI
- Thermo isolated
- Temperature controlled by Peltier element
- Thermo stabilization prototype tested, acc. 0.1°C, PID controller
- Temperature response scanning
- Thermo ramp up/down for stability testing (glue, optical contact)

Linear Positioner: XY table

- •Provides great stiffness and repeatability
- •Can hold few collimated γ-sources for faster scanning
- •ASCII code controllable, integrated into DAQ
- •Low power motors \rightarrow compatible with climate chamber
- •Tested (master student project)

CALIFA ENDCAP

iPhos

- ✓ CsI(Tl) (18-20 cm long) readout with LAAPD
- ✓ Two time decay constants (~ 600 ns and 3.5 µs)
 → the related scintillation amplitudes can be used for particle identification.
- ✓ p Energy determination up to 700 MeV ($\Delta E/E \sim 5\%$)

CEPA

✓ Phoswich of 4cm LaBr +6cm LaCl
✓ 1MeV γ ΔE/E ~ 3%, punch trough p ~ 5%
✓ Good timing

Institution	Funds				
Chalmers (Sweden)	475 k€				
Germany	request 2014				
Spain	request 2015				

R&D period 2005-2014
 TDR t.b. submitted Nov. 2014

- Dedicated structure
- Up to 12 Petals
- Petal = (8x2 carbon fiber alveoli= 16x4 = 64 detection units CsI(Tl) / APD + FEE)
- Funded by Spain, Sweden and Germany

- Prototype test at MLL,
 Upssala, CMAM,
 TUDarmstadt
- Petal tests at IFJ PAN
- Demonstrator tests at GSI 2 PETALS

1-8 October 2014 at Cave C. First coupling test for Si-Tracker, CALIFA +NeuLAND

- ⁴⁸Ca + PE → (p,2p) reaction test of the Hybrid mode γ spectroscopy and p calorimetry
- > ${}^{48}Ca+C \rightarrow$ neutron knoctout γ spectroscopy of ${}^{47}Ca$

→ ${}^{48}Ca+Pb \rightarrow PDR$ excitations γ cascade (γ calorimetry)

SFAIR CALIFA Funding

		Costs	Inst.	FAIR/ex					
		[k€]		t					
		2,800			-2014	2015	2016	2017	2018
1.2.1	LEB Super-FRS								
1.2.2	HISPEC/DESPEC	1,000							
1.2.2.2.2	HISPEC/DESPEC Beamline (2nd share)	20.0	Lund	FAIR				20.0	
1.2.2.2.9	HISPEC/DESPEC Beamline (9th share)	20.0	Lund	ext				20.0	
1.2.2.10.2	LYCCA (2nd share)	150.0	Lund	FAIR	150.0				
1.2.2.10.4	LYCCA (4th share)	100.0	Lund	ext	100.0				
1.2.2.14.8	DESPEC high-res. g-detector (8th share)	400.0	КТН	FAIR				400.0	
1.2.2.14.10	DESPEC high-res. g-detector (10th share)	250.0	КТН	ext				250.0	
1.2.2.16.3.1	NEDA (1st share)	30.0	Uppsala	FAIR		30.0			
1.2.2.16.3.2	NEDA (2nd share)	30.0	Uppsala	ext		30.0			
1.2.5	R3B	1,800							
1.2.5.1.1.1.1	Quadrupole triplet (1st share)	75.0	VR-RFI	FAIR			75.0		
1.2.5.1.1.1.3	Quadrupole triplet (3rd share)	75.0	VR-RFI	ext			75.0		
1.2.5.1.2.3.1.1	CALIFA barrel stage 1 (5th share)	399.2	Lund	FAIR	399.2				
1.2.5.1.2.3.2.6	CALIFA forward endcap (1st share)	251.0	Chalmers	FAIR			250.8		
1.2.5.1.2.3.2.3	CALIFA forward endcap (3rd share)	600.0	Chalmers	ext			600.0		
1.2.5.1.3.3	Vacuum systems (3rd share)	20.0	Lund	FAIR				20.0	
1.2.5.1.3.4	Vacuum systems (4th share)	20.0	Lund	ext				20.0	
1.2.5.1.4.2	DAQ electronics (2nd share)	140.0	Chalmers	FAIR					140.0
1.2.5.1.4.4	DAQ electronics (4th share)	110.0	Lund	ext					110.0
1.2.5.1.5.2	Gas supplies for detectors	20.0	Lund	FAIR				20.0	
1.2.5.1.5.3	rack cooling system	20.0	Lund	FAIR					20.0
1.2.5.1.5.4	fire safety for electronic racks	20.0	Lund	ext					20.0
1.2.5.1.5.5	long cables and trays	50.0	Chalmers	FAIR				50.0	
	Total NUSTAR				649.2	60	1001	800	290

Sum FAIR in-kind	1,575			
Sum external	1,225			
EB Building	350			
SUM NUSTAR	3,150			