Super-FRS In-kind Contributions

Andreas Heinz Chalmers University of Technology SFAIR, Uppsala University, October 11, 2014

Part I: Expression of Interest

SFAIR has, so far, expressed interest in two in-kind contributions crucial to the Super-FRS (accelerator) infrastructure:

A scintillator system for the Super-FRS (Lund)
 A Super-FRS data acquisition system (Chalmers)

1. A Scintillator System for Super-FRS

Needed are accurate position and time-of-flight (ToF) measurements for:

- \Rightarrow identification of fragments
- \Rightarrow tracking and Super-FRS calibration

Needed performance:

- \Rightarrow high resolution
- \Rightarrow need to be able to sustain high rates of ions without loss of resolution

General Approach

- ⇒ Use a design based on the LYCCA (Lund-York-Cologne Calorimeter) ToF detector (R. Hoischen *et al.*, NIMA 654 (2011) 354
- ⇒ idea: collect as many photons as possible; many independent measurements
- \Rightarrow Very high time resolution:

6.4 ps RMS for ¹²⁴Xe at 80 A MeV

Realization

- \Rightarrow build 4-5 detectors (elliptic shape) with 12-16 PMTs, each.
- \Rightarrow use front end cards that are able to obtain energy-loss

cards).

- \Rightarrow use VULOM-based TDCs (VFTX).
- ⇒ electronics has been developed by GSI and was used already in experiments.
- ⇒ expect a resolution of less than 50 ps FWHM

Super-FRS Focal Planes

Super-FRS Focal Planes

Advantages

- \Rightarrow crucial for all NUSTAR experiments
- \Rightarrow excellent performance
- \Rightarrow proven technology
- \Rightarrow expertise in Lund

2. A Super-FRS data acquisition system

- \Rightarrow will be part of the NUSTAR Data Acquisition System (NDAQ)
- ⇒ background: all NUSTAR experiments need data from Super-FRS detectors => common approach + fixed infrastructure
- \Rightarrow basic principles of NDAQ:
 - \Rightarrow continuous operation; distributed DAQ
 - ⇒ sub-systems (nodes) work either independently or are connected as needed

Operating Modes

Two fundamental ways of taking data: triggered and trigger-less (free running) ⇒ NDAQ supports both as well as a hybrid mode.

Events and Timing

Independent sub-systems produce sub-events (triggered mode), which are time-stamped:

- \Rightarrow White Rabbit provides an absolute time reference
- ⇒ BuTiS is used for high-accuracy time measurements (most important here: time-of-flight measurements)

Sticky Events

Have information on hardware (detector or magnet parameters) in the listmode data stream:

- \Rightarrow needed for analysis
- \Rightarrow more reliable than human-recorded information
- \Rightarrow requires interfacing with hardware

Part II: Possible other In-kind Contributions

The two already mentioned topics have a cost-book value of 76 + 305 = 381 kEUR. Remaining money for in-kind contributions: 1.07 - 0.38 = 0.69 kEUR. Three possibilities (PSP cost codes already assigned) for Super-FRS (accelerator) in-kind contributions:

- 1. A control system for the fields of the Super-FRS magnets (385 kEUR)
- 2. Super-FRS infrastructure and control systems (329 kEUR)
- 3. A Super-FRS robot system (214 kEUR)

1. Magnet Field Control

- \Rightarrow Magnet field control for 27 units
- \Rightarrow NMR or Hall probes
- ⇒ Item for tendering and buying only;
 i.e. a plain invest item.
- ⇒ 3 units less than cost-book, because NMR or Hall probes would have a too short lifetime in the preseparator - due to their sensitivity to radiation damage

=> use only current measurement here.

2. Infrastructure and Control

- \Rightarrow beam diagnostics and instrumentation
- \Rightarrow 95 channels in the cost book
- \Rightarrow possible synergy with Super-FRS DAQ (sticky events)?
- \Rightarrow item still under much discussion at GSI
- ⇒ requires no only tendering/buying but also some manpower
- \Rightarrow very interesting with respect to our expertise.

Robot System

- \Rightarrow Robot system needed due to high radiation levels.
- ⇒ robot for second dipole stage of the pre-separator (PF2 and PF4).
- \Rightarrow Requires engineering time.
- \Rightarrow Finland might be interested.
- \Rightarrow No expertise in SFAIR up to now

Summary

SFAIR expressed already interest in scintillators and a data acquisition system for the Super-FRS: Both items were approved by relevant FAIR bodies.

Is there a possibility for SFAIR to take on further in-kind tasks? Options:

- magnet field control (385 kEUR)
- infrastructure and control (beam diagnostics) (329 kEUR)
- robot system (214 kEUR)

Which one(s)?

Feel free to discuss!

Acknowledgements

A. Charpy, A. Chatillion, R. Gernhäuser, H.T. Johansson,
N. Kurz, I. Lazarus, T. Le Bleis, B. Loeher, T. Nilsson,
C. Nociforo, S. Pietri, C. Pucknell, D. Rudolph, H. Schaffner,
H. Simon

BACK-UP SLIDES

The Super-FRS

Plastics scintillators at the Super-FRS

Table of plastics scintillators at the Super-FRS

The thicknesses foreseen **1 mm** and **3 mm**.

Good timing resolution required for all, except the one at FPF3.

