

Machine-learning for stellar spectroscopy: past, present and future

Guillaume Guiglion (GG; ZAH/LSW, MPIA, guiglion@mpia.de)

Department of Physics and Astronomy, Uppsala University, Thu. 12 Oct 2023

C. Chiappini

M. Valentini

M. Steinmetz

G. Matijevič

Š. Mikolaitis

I. Minchev

A. Queiroz

M. Ambrosch

K. Youakim

M. Bergemann

Context: Galactic Archaeology

 \rightarrow studying the formation and evolution of the Milky Way and it's local volume

→ Stellar chemistry in essential for Galactic Archaeology

→ The Tinsley-Wallerstein diagram

Tinsley

George Wallerstein

→ Stellar chemistry in essential for Galactic Archaeology

→ The Tinsley-Wallerstein diagram

Other types of elements:

- → Fe-peak: Z, Cu, Ni, Co, Fe, Mn, Cr, V
- → neutron-capture: Sr, Y, Zr, Ba, La, Ce, Pr, Sm, Eu, Gd, Dy, ... (Battistini & Bensby 2016)
- → Light: Li, B, Be, C, N (Randich & Magrini 2021)
- \rightarrow Odd-Z: Sc, K, Al, Na

The need for large spectroscopic surveys

10⁵ stars

>10⁴ stars

🛜 G A L A H

>5x10⁵ stars

>10⁶ stars

>5x10⁶ spec SDSS >10⁶ stars

gaia

>10⁶ stars

>5x10⁵ stars

30x10⁶ stars

N A A

>10⁶ stars

Gaia: Gaia Collaboration, Vallenari et al. 2022 AMBRE/ESO: Guiglion et al. 2016 LAMOST: Zhang et al. 2021 Gaia-ESO: Romano et al. 2021 GALAH: Gao et al. 2020 APOGEE: Abdurro'uf et al. 2022 4MOST: de Jong et al. 2019 WEAVE: Jin et al. 2022 MSE: Bergemann et al. 2019 MOONS: Cirasuolo et al. 2020

- → Atmospheric parameters:
 - \rightarrow Effective temperature T_{eff}
 - → Surface gravity log(g)
 - → Overall metallicity [M/H]
- → Average abundance ratios
 - → For instance $[\alpha/M]$ with α goes for α -elements (Mg, Si, Ca, O, Ti, Ne, S)
- \rightarrow Individual chemical abundances
 - \rightarrow [X/Fe] with X = {Mg, Si, Ti, Ni, Fe, Ba, Eu,}

Many other parameters, such as rotation, activity, mass, age ...

What type of stars are we interested in ?

→ Using stellar evolutionary models + magnitudes + parallaxes (distances)

- \rightarrow Can measure T_{eff}, log(g), [M/H]
- → StarHorse code: Queiroz et al (2018, 2020, 2023), Anders et al. (2019, 2022)

Standard analysis of stellar spectra

How do we measure astrophysical quantities?

→ Using stellar spectra

How do stellar spectra correlate with astrophysical parameters ?

→ Example: effective temperature

How do we measure chemical abundances ?

→ One popular method: spectral fitting

Amarsi et al. 2020)

Blends

Low-res vs. High-res

Rotation, Turbulence

To create model spectra, we need:

More details on chemical abundance derivation: \rightarrow Jofré, Heiter, and Soubiran (2019) 14

The impact of spectral resolution on abundance determination

- → Lower spectral resolution:
 - → Less clean spectral features to rely on
 - \rightarrow Less elements to be measured
 - → Lower precision

Machine-learning analysis of stellar spectra

The world of machine-learning

Supervised Learning			Unsupervised Learning	
Regression	Classification	Neural networks	Clustering	Dimensionality Reduction
Linear Regression	Logistic Regression	Convolutional Neural Networks (CNN)	K-means	t-Distributed Stochastic Neighbor Embedding (t-SNE)
K-Nearest Neighbors Regression (KNN)	K-Nearest Neighbors Classification (KNN)	Generative Adversarial Networks (GAN)	Gaussian Mixture Models (GMM)	Locally Linear Embedding (LLE)
Random Forest Regression	Random Forest Classification	Long Short Term Memory Networks (LSTM)	Hierarchical Agglomerative Clustering (HAC)	Uniform Manifold Approximation and Projection (UMAP)
Decision Tree Regression (CART)	Decision Tree classification (CART)	Gated Recurrent Units (GRU)	Density-Based spatial Clustering of Applications with Noise (DBSCAN)	Multidimensional Scaling (MDS)
Support Vector Regression (SVR)	Support Vector Machines (SVM)	Feedforward Neural Networks (FFNN)		Principal Component Analysis (PCA)
Multivariate Adaptive regression Splines (MARS)	Extreme Gradient Boosting (XGBoost)		4	Isomap Embedding
	Gradient Boosted Trees			
	Naive Bayes]		

Webb & Good 2023

\rightarrow In the current talk, I will discuss only on Convolutional Neural-Networks

Basic concepts of Convolutional Neural-Networks (CNN)

→ Practical example: Cat and dog classification

→ Some literature:
 LeCun et al. 1989
 LeCun & Bengio 1995
 Ciresan et al. 2011

CNNs for stellar spectroscopy

→ Example: Measuring temperature of the star

which spectrum is

Past applications of CNNs for stellar spectroscopy

Our experience with CNNs and RAVE spectra

- → 1st application of CNNs combining RAVE spectra, Gaia magnitudes, and parallaxes
- \rightarrow Training set: 4000* with labels from APOGEE DR16 (R~22000)
- \rightarrow Transfer high-quality labels to low-resolution RAVE spectra (R~7500)

See also: Bailer- lones et

Bailer-Jones et al. 1997 Leung & Bovy 2019 Fabbro et al. 2018 Zhang et al. 2019 Bialek et al. 2020

 \rightarrow Such particular combination of data allows to break the spectral degeneracies inherent to RAVE spectra (and likely to be present in *Gaia* RVS spectra)

- \rightarrow Why is lithium important ?
 - → Chemical evolution of Li in the Milky Way still unclear (e.g. Guiglion et al. 2019)
- \rightarrow Training set: 7000 stars with *Gaia*-ESO spectra, to derive T_{eff}, log(g), [Fe/H], A(Li)

- \rightarrow Why is lithium important ?
 - → Chemical evolution of Li in the Milky Way still unclear (e.g. Guiglion et al. 2019)
- → Training set: 7000 stars with Gaia-ESO spectra, to derive Teff, log(g), [Fe/H], A(Li)

- \rightarrow Why is lithium important ?
 - \rightarrow Chemical evolution of Li in the Milky Way still unclear (e.g. Guiglion et al. 2019)
- → Training set: 7000 stars with Gaia-ESO spectra, to derive T_{eff}, log(g), [Fe/H], A(Li)

- \rightarrow Why is lithium important ?
 - \rightarrow Chemical evolution of Li in the Milky Way still unclear (e.g. Guiglion et al. 2019)
- \rightarrow Training set: 7000 stars with Gaia-ESO spectra, to derive T_{eff}, log(g), [Fe/H], A(Li)

- \rightarrow Why is lithium important ?
 - \rightarrow Chemical evolution of Li in the Milky Way still unclear (e.g. Guiglion et al. 2019)
- \rightarrow Training set: 7000 stars with Gaia-ESO spectra, to derive T_{eff}, log(g), [Fe/H], A(Li)

- \rightarrow Why is lithium important ?
 - \rightarrow Chemical evolution of Li in the Milky Way still unclear (e.g. Guiglion et al. 2019)
- \rightarrow Training set: 7000 stars with Gaia-ESO spectra, to derive T_{eff}, log(g), [Fe/H], A(Li)

- \rightarrow Why is lithium important ?
 - \rightarrow Chemical evolution of Li in the Milky Way still unclear (e.g. Guiglion et al. 2019)
- → Training set: 7000 stars with Gaia-ESO spectra, to derive Teff, log(g), [Fe/H], A(Li)

- \rightarrow Why is lithium important ?
 - \rightarrow Chemical evolution of Li in the Milky Way still unclear (e.g. Guiglion et al. 2019)
- → Training set: 7000 stars with Gaia-ESO spectra, to derive Teff, log(g), [Fe/H], A(Li)

- \rightarrow Why is lithium important ?
 - \rightarrow Chemical evolution of Li in the Milky Way still unclear (e.g. Guiglion et al. 2019)
- → Training set: 7000 stars with Gaia-ESO spectra, to derive Teff, log(g), [Fe/H], A(Li)

Nepal, GG et al. (2023) https://github.com/SamirNepal/Li_CNN_2022

- \rightarrow Why is lithium important ?
 - \rightarrow Chemical evolution of Li in the Milky Way still unclear (e.g. Guiglion et al. 2019)
- \rightarrow Training set: 7000 stars with Gaia-ESO spectra, to derive T_{eff}, log(g), [Fe/H], A(Li)

Nepal, GG et al. (2023) https://github.com/SamirNepal/Li_CNN_2022

Present application of CNNs for stellar spectroscopy

Gaia: ESA's billion star surveyor

https://www.esa.int/Enabling_Support/Operations/Gaia_s_biggest_operation_since_launch

https://www.cosmos.esa.int/web/gaia/instruments

Gaia: ESA's billion star surveyor

104.26cm Blue Photometer CCDs **Red Photometer CCDs** Wave Front Sensor Wave Front Sensor 42.35 cm **Radial-Velocity Spectrometer** Basic Angle Monito **CCDs** Basic Angle Star motion in 10 s **Sky Mapper** Astrometric Field **CCDs CCDs** Low-resolution Intermediate-**Position & Spectra** resolution **Brightness** (Blue & Red) spectra (abundances :))

Focal Plane

What Gaia DR3 gave us:

 \rightarrow 220 millions BP&RP spectra R~30-100 (De Angeli et al. 2022)

- \rightarrow 1.5x10⁹ parallaxes (Lindegren et al. 2021)
- → 1.8x10⁹ G mags
- → 1.5x10⁹ BP & RB mags

→ See Recio-Blanco et al. 2023 for standard spectroscopic analysis of RVS spectra

Can we exploit in a homogeneous way Gaia spectra (RVS + BP/RP) magnitudes (G, Bp, Rp) and parallaxes for supercharged stellar parametrization?

Analysis of the 1 million Gaia RVS-spectra with CNNs

Beyond Gaia DR3: tracing the $[\alpha/M] - [M/H]$ bimodality from the Inner to the outer Milky Way disc with Gaia RVS and Convolutional Neural-Networks

G. Guiglion¹, S. Nepal^{2,3}, C. Chiappini², S. Khoperskov², G. Traven⁴, A. B. A. Queiroz², M. Steinmetz²,
M. Valentini², Y. Fournier², A. Vallenari⁵, K. Youakim⁶, M. Bergemann¹, S. Mészáros^{7,8}, S. Lucatello^{9,10},
R. Sordo⁵, S. Fabbro¹¹, I. Minchev², G. Tautvaišienė¹², Š. Mikolaitis¹², J. Montalbán¹³

- → Resubmitted :)
- Motivations and goals:
- → Use homogeneously the full Gaia data product
- \rightarrow Leverage the low-S/N RVS sample No GSP-Spec labels with "good" flags within 15<S/N<25
- → Set the machine-learning path for Gaia data analysis (DR4 in 2025, DR5 in 2027)

Z

Analysis of the 1 million Gaia RVS-spectra with CNNs

Training sample

Knowledge transfer from high-quality high-res APOGEE labels T_{eff}, log(g), [M/H], [α/M], [Fe/H] to intermediate-res RVS

gaia R~11400

A hybrid Convolutional Neural-Network for Gaia-RVS analysis

→ Prediction time 4 labels in 3300 stars / second How to ensure that a label falls within the training sample limits ?

 \rightarrow Labels within T_{eff}, log(g), [M/H], [α /M], [Fe/H], G, and parallax limits of training sample.

Robust estimates of T_{eff}, log(g), [M/H] for 690000 Gaia stars

GG, Nepal et al. 2023

→ By adding magnitudes, parallaxes and XP data, CNN is able to break spectral degeneracies in *Gaia* RVS spectra.

Robust estimates of T_{eff}, log(g), [M/H] for 690000 Gaia stars

GG, Nepal et al. 2023

→ By adding magnitudes, parallaxes and XP data, CNN is able to break spectral degeneracies in *Gaia* RVS spectra.

 \rightarrow CNN results are as good as the training set can be.

CNN performances for halo stars \rightarrow 15<S/N<25

- \rightarrow CNN provides precise and accurate labels down to [M/H]=-2.4 dex
- \rightarrow More external validation with GALAH, OCs, and GSP-Phot

Chemical cartography of the Milky Way, for Inner to Outer regions with Gaia and CNN

 \rightarrow We selected giants, to probe large distances, and limit possible systematics \rightarrow 147416 stars

→ Galactic radius and Height adopted from Nepal et al. In prep. (using StarHorse distances).

Chemical cartography of the Milky Way, for Inner to Outer regions with Gaia and CNN

 \rightarrow We selected giants, to probe large distances, and limit possible systematics \rightarrow 147416 stars

→ Galactic radius and Height adopted from Nepal et al. In prep. (using StarHorse distances).

 \rightarrow Studying the chemical abundance pattern [α /M] vs. [M/H] as function of R and Z

Chemical cartography of the Milky Way, for Inner to Outer regions with Gaia and CNN

Chemical cartography of the Milky Way, for Inner to Outer regions with Gaia and CNN

Future application of CNNs for stellar spectroscopy

4MOST (de Jong et al. 2019) → 4MIDABLE-LR Disc and Bulge surveys (Chiappini et al. 2019)

>20 elements to be measured at R=5000

4MIDABLE-LR ESO proposal 2020

→ Developing CNN for 4MIDABLE-LR D1(>) spectral analysis.

4MIDABLE-LR ESO proposal 2020

Summary:

- CNN is an optimal method for combining full Gaia data product \rightarrow Leveraging the large set of low S/N RVS spectra
- CNN parametrization is fast and robust (several 10³ stars per second)

Insights:

- Standard spec. and ML methods complement each other !
- Future spectroscopic surveys will strongly benefit from CNNs
- CNN parametrization mainly reliable within the training sample limits

 → The training sample should be built in a pro-active way
 E.g.: IWG3 for 4MOST

guiglion@mpia.de

