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Context: Galactic Archaeology
→ studying the formation and evolution of the Milky Way and it’s local volume

https://en.wikipedia.org/wiki/Milky_Way
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→ Stellar chemistry in essential for Galactic Archaeology
→ The Tinsley-Wallerstein diagram

30 stars from Wallerstein (1962)

Beatrice
Tinsley

George
Wallerstein
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~500000 stars from GALAH (Buder et al. 2021)30 stars from Wallerstein (1962)

→ Stellar chemistry in essential for Galactic Archaeology
→ The Tinsley-Wallerstein diagram

Other types of elements:
→ Fe-peak: Z, Cu, Ni, Co, Fe, Mn, Cr, V
→ neutron-capture: Sr, Y, Zr, Ba, La, Ce, Pr, Sm, Eu, Gd, Dy, … (Battistini & Bensby 2016)
→ Light: Li, B, Be, C, N (Randich & Magrini 2021)
→ Odd-Z: Sc, K, Al, Na
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Koppelmann et al. 2019

→ Stellar chemistry in essential for Galactic Archaeology
→ But stellar kinematics and stellar ages too :)

Haywood et al. 2019
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The need for large spectroscopic surveys

Gaia: Gaia Collaboration, Vallenari et al. 2022
AMBRE/ESO: Guiglion et al. 2016
LAMOST: Zhang et al. 2021
Gaia-ESO: Romano et al. 2021
GALAH: Gao et al. 2020
APOGEE: Abdurro'uf et al. 2022
4MOST: de Jong et al. 2019
WEAVE: Jin et al. 2022
MSE: Bergemann et al. 2019
MOONS: Cirasuolo et al. 2020

LAMOST

105 stars

>5x105 stars

5x105 stars

106 stars

30x106 stars >106 stars

>106 stars

>5x105 stars

>104 stars
>106 stars

>106 stars

>5x106 spec
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What we measure from a star:

→ Atmospheric parameters:
→ Effective temperature Teff

→ Surface gravity log(g)
→ Overall metallicity [M/H]

→Average abundance ratios
→ For instance [α/M] with α goes for α-elements (Mg, Si, Ca, O, Ti, Ne, S)

→ Individual chemical abundances
→ [X/Fe] with X = {Mg, Si, Ti, Ni, Fe, Ba, Eu, ….} 

Many other parameters, such as rotation, activity, mass, age ...
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Buder et al. 2018
GALAH Survey
 10 605 stars

What type of stars are we interested in ?
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How do we measure astrophysical quantities? 

→ Using photometry (stellar magnitudes)

→ See also Casagrande et al. 2021 (+ references there-in)

→ Using stellar evolutionary models + magnitudes + parallaxes (distances)
→ Can measure Teff, log(g), [M/H] 
→ StarHorse code: Queiroz et al (2018, 2020, 2023), Anders et al. (2019, 2022) 

Casagrande et al. 2010
Casagrande et al. 2010
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Standard analysis
of stellar spectra
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How do we measure astrophysical quantities? 
→ Using stellar spectra

FeHFe  CaCa Na H O O

λ (Å) https://cesar.esa.int/index.php

Solar spectrum
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How do stellar spectra correlate with astrophysical parameters ?
→ Example: effective temperature

Teff (K)

> 20000

[10000-20000]

[7500-1000]

[6000-7500]

[4500-6000]

[3000-4500]

< 3000
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Battistini & Bensby 2016

Challenges to face:
1D vs 3D
LTE vs. NLTE
(Lind et al. 2009, Wang et al. 2021, 
Amarsi et al. 2020)
Low-res vs. High-res
Blends
Rotation, Turbulence

How do we measure chemical abundances ?

Model atmosphere
(e.g MARCS, Gustafsson et al. 2008)

Atomic data
(VALD, Piskunov et al. 1995,

GES, Heiter et al. 2021)

Radiative transfer code
(e.g. Turbospectrum)

+

Teff
log(g)
[M/H]

+

+

→ One popular method: spectral fitting To create model spectra, we need:

More details on chemical abundance derivation:
→ Jofré, Heiter, and Soubiran (2019)
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The impact of spectral resolution on abundance determination

→ Lower spectral resolution:
→ Less clean spectral features to rely on
→ Less elements to be measured
→ Lower precision
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Machine-learning analysis
of stellar spectra
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The world of machine-learning

Webb & Good 2023

The world of machine-learning

→ In the current talk, I will discuss only on Convolutional Neural-Networks
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Basic concepts of Convolutional Neural-Networks (CNN)
→ Practical example: Cat and dog classification

CNN:
High-D non-linear function

composed of neurons,
characterized by

weights and biases

Data Labels→ 
Data Labels

Cat
Dog
...
Dog
Cat

→ Step 1: build a training sample
→ Step 2: generate (train) a model between data and labels

→ 

→ Step 3: predict the type of animal on a picture

CNN
model→ → Dog

 ?

→ Some literature:
LeCun et al. 1989
LeCun & Bengio 1995
Ciresan et al. 2011
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CNNs for stellar spectroscopy

Input:
Spectra

Output:
Labels

→ 

→ Step 1: build a training set
(with labels determined from
standard spectroscopic methods)

Data = spectra Labels = Teff

→ Example: Measuring temperature of the star              which spectrum is 

5234
4834
2730
7598
…
…
…

→ Step 3: predict temperature of 

Trained
CNN→ 

CNN:
High-D non-linear function

composed of neurons,
characterized by

weights and biases

→ 

→ Teff = 5812 K

T = ?

→ Step 2: train a CNN

5234
4834
2730
7598
…
…
…
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Past applications of CNNs
for stellar spectroscopy
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Our experience with CNNs and RAVE spectra

→ 1st application of CNNs combining RAVE spectra,
     Gaia magnitudes, and parallaxes
→ Training set: 4000* with labels from APOGEE DR16 (R~22000)
→ Transfer high-quality labels to low-resolution RAVE spectra (R~7500)

Standard spectroscopy:
Using only spectra
(Steinmetz et al. 2020)

Guiglion et al. 2020

CNN

→ Such particular combination of data allows to break the spectral degeneracies inherent to RAVE spectra
(and likely to be present in Gaia RVS spectra)

See also:
Bailer-Jones et al. 1997
Leung & Bovy 2019
Fabbro et al. 2018
Zhang et al. 2019
Bialek et al. 2020
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S. Nepal (AIP)

Chemical evolution of lithium with CNN from stellar spectra
→ Why is lithium important ?

→ Chemical evolution of Li in the Milky Way still unclear (e.g. Guiglion et al. 2019)

→ Training set: 7000 stars with Gaia-ESO spectra, to derive Teff, log(g), [Fe/H], A(Li)
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S. Nepal (AIP)

Chemical evolution of lithium with CNN from stellar spectra
→ Why is lithium important ?

→ Chemical evolution of Li in the Milky Way still unclear (e.g. Guiglion et al. 2019)

→ Training set: 7000 stars with Gaia-ESO spectra, to derive Teff, log(g), [Fe/H], A(Li)

Nepal, GG et al. (2023)
https://github.com/SamirNepal/Li_CNN_2022
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S. Nepal (AIP)

Chemical evolution of lithium with CNN from stellar spectra
→ Why is lithium important ?

→ Chemical evolution of Li in the Milky Way still unclear (e.g. Guiglion et al. 2019)

→ Training set: 7000 stars with Gaia-ESO spectra, to derive Teff, log(g), [Fe/H], A(Li)

Nepal, GG et al. (2023)
https://github.com/SamirNepal/Li_CNN_2022

→ CNN learns efficiently from relevant spectral features !!
→ CNN well suited for Li derivation
(good insights for next surveys like 4MOST)
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Present application of CNNs
for stellar spectroscopy
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Gaia: ESA's billion star surveyor 

https://www.esa.int/Enabling_Support/Operations/Gaia_s_biggest_operation_since_launch

https://www.cosmos.esa.int/web/gaia/instruments

Focal plane
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Gaia: ESA's billion star surveyor 

https://www.cosmos.esa.int/web/gaia/payload-module

Position & 
Brightness

Low-resolution
Spectra

(Blue & Red)

Intermediate-
resolution

spectra
(abundances :) )
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What Gaia DR3 gave us: → 220 millions BP&RP spectra 
R~30-100 (De Angeli et al. 2022)

Rp

Credit: ESA/Gaia/DPAC- CC BY-SA 3.0 IGO, R. Andrae

Bp

→ 106 RVS spectra, R~11500 (Katz et al. 2022)

→  1.5x109 parallaxes 
(Lindegren et al. 2021)
→  1.8x109 G mags
→  1.5x109 BP & RB mags

→ See Recio-Blanco et al. 2023 for standard
    spectroscopic analysis of RVS spectra

~3000 K ~4700 K

~6000 K ~7300 K

~10000 K ~21000 K

https://creativecommons.org/licenses/by-sa/3.0/igo/
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Can we exploit in a homogeneous way 
Gaia spectra (RVS + BP/RP)

magnitudes (G, Bp, Rp)
and parallaxes

for supercharged stellar 
parametrization ?
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Analysis of the 1 million Gaia RVS-spectra with CNNs

Motivations and goals: 
→ Use homogeneously the full Gaia data product

→ Leverage the low-S/N RVS sample
No GSP-Spec labels with “good” flags within 15<S/N<25 

→ Set the machine-learning path for Gaia data analysis
    (DR4 in 2025, DR5 in 2027)

→ Resubmitted :)
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Analysis of the 1 million Gaia RVS-spectra with CNNs

R~22000

R~11400

Knowledge transfer
from high-quality
high-res APOGEE labels
Teff, log(g), [M/H], [α/M], [Fe/H] 
to intermediate-res RVS

GG, Nepal et al. 2023

Training sample

Training sample
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A hybrid Convolutional Neural-Network for Gaia-RVS analysis

→ Prediction time
4 labels in 3300 stars / second

GG, Nepal et al. 2023
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How to ensure that a label falls within the training sample limits ?

→ Labels within Teff, log(g), [M/H], [α/M], [Fe/H], G, and parallax limits of training sample.

→ t-SNE classification of RVS spectra

→ 644287 RVS stars within TS

GG, Nepal et al. 2023
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Robust estimates of Teff, log(g), [M/H] for 690000 Gaia stars
GG, Nepal et al. 2023

→ By adding magnitudes, parallaxes and XP data, CNN is able to break spectral 
degeneracies in Gaia RVS spectra.
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Robust estimates of Teff, log(g), [M/H] for 690000 Gaia stars
GG, Nepal et al. 2023

→ By adding magnitudes, parallaxes and XP data, CNN is able to break spectral 
degeneracies in Gaia RVS spectra.
→ CNN results are as good as the training set can be.
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CNN performances for halo stars
→ 15<S/N<25

→ CNN provides precise and accurate labels down to [M/H]=-2.4 dex

GG et al. 2023

→ More external validation with GALAH, OCs, and GSP-Phot
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Chemical cartography of the Milky Way, for Inner to Outer regions with Gaia and CNN

→ We selected giants, to probe large distances, and limit possible systematics → 147416 stars
→ Galactic radius and Height adopted from Nepal et al. In prep. (using StarHorse distances).

Galactic radius R (kpc) Galactic radius R (kpc)
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Chemical cartography of the Milky Way, for Inner to Outer regions with Gaia and CNN

→ We selected giants, to probe large distances, and limit possible systematics → 147416 stars
→ Galactic radius and Height adopted from Nepal et al. In prep. (using StarHorse distances).

Galactic radius R (kpc) Galactic radius R (kpc)
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→ Studying the chemical abundance pattern [α/M] vs. [M/H] as function of R and Z
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Chemical cartography of the Milky Way, for Inner to Outer regions with Gaia and CNN

G
G

, N
ep

al
 e

t a
l. 

20
23



47

Chemical cartography of the Milky Way, for Inner to Outer regions with Gaia and CNN

→ Findings consistent with past studies (Minchev et al. 2015, Anders et al. 2014,
Hayden et al. 2015, Rojas-Arriagada et al. 2019, Queiroz et al. 2020, 2021).
→ Opening a new era of Galactic Archaeology with Gaia-RVS (Guiglion et al. In prep,
Nepal et al. in prep a,b)
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Future application of CNNs
for stellar spectroscopy
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4MOST (de Jong et al. 2019)
→ 4MIDABLE-LR Disc and Bulge surveys (Chiappini et al. 2019) 

4MIDABLE-LR ESO proposal 2020

4MIDABLE-LR ESO proposal 2020

4MOST LR survey
>20 million stars

>20 elements to be measured at R=5000

→ Developing CNN for 4MIDABLE-LR D1(>)
    spectral analysis.
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Summary:

- CNN is an optimal method for combining full Gaia data product
→  Leveraging the large set of low S/N RVS spectra

- CNN parametrization is fast and robust (several 103 stars per second)

Insights:

- Standard spec. and ML methods complement each other !

- Future spectroscopic surveys will strongly benefit from CNNs

- CNN parametrization mainly reliable within the training sample limits
    → The training sample should be built in a pro-active way

E.g.: IWG3 for 4MOST

guiglion@mpia.de
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