# Overview of ATLAS HH/SH Run-2 results and Run-3 plan

#### David Brunner on the behalf of Stockholm University ATLAS group

HIPPO meeting at UU 6.12.2023





## What are we exactly looking for?



#### A (quite old) event display of a di-jet + di-photon event



■ David Brunner 
■ HIPPO meeting at UU 
■ 6.12.2023 
■

### SH signal process

#### Choice of final state:



- $\therefore$  X and S Higgs-like heavy bosons, with  $m_X > m_S$
- H as Standard Model Higgs boson



- bbbb with large branching ratio, but challenging dominating multi-jet background



■ Overview of ATLAS HH/SH Run-2 results and Run-3 plan ■

#### Latest results of the SH searches in the $bb\gamma\gamma$ final state

#### ATLAS:

Search for a resonance decaying to a scalar particle and a Higgs boson in the final state with two bottom quarks and two photons in proton-proton collisions at  $\sqrt{s} = 13$  TeV with the ATLAS detector

Coming soon to your favourite high energy particle physics iournal!



- Analysis with  $\sqrt{s} = 13 \text{ TeV}$ and integrated luminosity of  $138 \text{ fb}^{-1}$
- X are 260-1000 GeV and 300-1000 GeV, with the Y mass range being 90-800 GeV
- Local (global) significance of 3.8 (2.8) standard deviations for X and Y masses of 650 and 90 GeV

#### Recent analysis with other final states\*:

- 121 ATLAS bbbb decay mode arXiv:2202.07288
- 121 ATLAS  $bb\tau\tau$  decay mode arXiv:2209.10910
- ATLAS  $bb\gamma\gamma$  decay mode 121 arXiv:2112.11876
- CMS bbbb decay mode 121 arXiv:2204.12413
- <del>لط</del> CMS bbWW decay mode arXiv:2112.03161
- CMS  $\tau \tau$ WW/ $\tau \tau \tau \tau$ /WWWW 121 decay mode arXiv:2206.10268

\*(most of the time resonant HH analysis, where an additional heavy resonance study is performed)



David Brunner # HIPPO meeting at UU # 6.12.2023 #

## Current analysis and plans for next iteration

#### What is currently done:

- $\checkmark$  Analysis in the  $bb\gamma\gamma$  final state with data taken from 2016-2018 (Run 2)
- riangle Mass window cut on di- $\gamma$  mass and usage of mass-parametrised in X and S mass to increase signal sensitivity
- Simplified signal model used (no underlying physics model is used)

#### What is planned (so far) for the next analysis iteration:

- $\stackrel{\text{\tiny bdy}}{=}$  Study both decay modes  $S(\rightarrow bb)H(\rightarrow \gamma\gamma)$  and  $S(\rightarrow \gamma\gamma)H(\rightarrow bb)$
- Analyse the kinematic phase space with highly boosted jets
- Use more sophisticated physics models for signal modeling





## Two-real-scalar-singlet (TRSM) extension of the SM

Ł

#### TRSM in a nutshell (arXiv:1908.08554)

TRSM potential:

Field parametrisation in unitary gauge:

$$\Phi = \begin{pmatrix} 0\\ \frac{\varphi_h + v_h}{\sqrt{2}} \end{pmatrix}, \quad \phi_S = \frac{\varphi_S + v_S}{\sqrt{2}}, \quad \phi_X = \frac{\varphi_X + v_X}{\sqrt{2}}$$

Mass eigen states parametrisation:

$$\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = R(\theta_{XS}, \theta_{SH}, \theta_{XH}) \begin{pmatrix} \varphi_h \\ \varphi_S \\ \varphi_X \end{pmatrix}$$

with  $m(h_3) > m(h_2) > m(h_1)$ 

7 free parameters:

 $v_X, v_S, \theta_{XS}, \theta_{SH}, \theta_{XH}, m_a, m_b$ 

Model scenarios

Two scenarios lead to wished signal configuration:

$$H = H_{SM} (BP3)$$

$$H_{3} = X, h_{2} = H_{SM}, h_{1} = S (BP_{2})$$

#### Benchmarks studied in paper and in the analysis:

| Parameter             | Benchmark scenario |            |            |          |            |             |
|-----------------------|--------------------|------------|------------|----------|------------|-------------|
|                       | BP1                | BP2        | BP3        | BP4      | BP5        | BP6         |
| $M_1 \; [\text{GeV}]$ | [1, 62]            | [1, 124]   | 125.09     | [1, 62]  | [1, 124]   | 125.09      |
| $M_2$ [GeV]           | [1, 124]           | 125.09     | [126, 500] | [1, 124] | 125.09     | [126, 500]  |
| $M_3$ [GeV]           | 125.09             | [126, 500] | [255, 650] | 125.09   | [126, 500] | [255, 1000] |
| $\theta_{hs}$         | 1.435              | 1.352      | -0.129     | -1.284   | -1.498     | 0.207       |
| $\theta_{hx}$         | -0.908             | 1.175      | 0.226      | 1.309    | 0.251      | 0.146       |
| $\theta_{sx}$         | -1.456             | -0.407     | -0.899     | -1.519   | 0.271      | 0.782       |
| $v_s$ [GeV]           | 630                | 120        | 140        | 990      | 50         | 220         |
| $v_x$ [GeV]           | 700                | 890        | 100        | 310      | 720        | 150         |



## Phenomenological studies (performed by Iram Haque)

#### Cross section comparison $S(\rightarrow bb)H(\rightarrow \gamma\gamma)$ vs $S(\rightarrow \gamma\gamma)H(\rightarrow bb)$ :



<sup>i</sup> Interesting observation: In BP3 is  $S(\rightarrow \gamma\gamma)H(\rightarrow bb)$  enhanced compared to  $S(\rightarrow bb)H(\rightarrow \gamma\gamma)$ 



7



- A lot of activity in the Higgs sectors
- Mostly SM di-Higgs boson searches, but beyond SM di-Higgs searches getting more attention
- SU was and is involved in heavy Higgs resonance searches at ATLAS





## Tack för er uppmärksamhet! (Thanks for your attention!)

