Simplified models for di-Higgs studies

Luca Panizzi

S. Moretti, LP, J. Sjölin and H. Waltari, Phys. Rev. D 107 (2023), 2302.03401 [hep-ph]

What can the signal be from a general perspective?

(limiting to gluon-fusion processes)

What can the signal be from a general perspective?

(limiting to gluon-fusion processes)

Modified SM couplings

What can the signal be from a general perspective?

(limiting to gluon-fusion processes)

What can the signal be from a general perspective?

(limiting to gluon-fusion processes)

And combinations of these ingredients

The number of possibilities is limited!

Simplified models for di-Higgs studies

Reduced cross-sections

Let's take one signal contribution:

$$g \xrightarrow{\tilde{s}_i}_{s_i} h \text{ with } \mathcal{L} = \kappa_{hh\bar{s}_i\bar{s}_i} hh\bar{s}_i^* \bar{s}_i$$

$$\mathcal{A} \propto \kappa_{hh\tilde{s}_i\tilde{s}_i} \longrightarrow \sigma = \kappa_{hh\tilde{s}_i\tilde{s}_i}{}^2 \hat{\sigma}(m_{\tilde{s}_i})$$

- $\kappa_{hh\tilde{s}_i\tilde{s}_i}$: rescaling of the cross-section
- $\hat{\sigma}(m_{\tilde{s}_i})$: kinematics of the process \longrightarrow reduced cross-section

Reduced cross-sections

Let's take one signal contribution:

$$g \xrightarrow{\tilde{s}_i}_{s_i} h \text{ with } \mathcal{L} = \kappa_{hh\bar{s}_i\bar{s}_i} hh\bar{s}_i^* \bar{s}_i$$

$$\mathcal{A} \propto \kappa_{hh\tilde{s}_i\tilde{s}_i} \longrightarrow \sigma = \kappa_{hh\tilde{s}_i\tilde{s}_i}^2 \hat{\sigma}(m_{\tilde{s}_i})$$

- κ_{hhīši}ši: rescaling of the cross-section
- $\hat{\sigma}(m_{\tilde{s}_i})$: kinematics of the process \longrightarrow reduced cross-section

Let's add another contribution:
$$g = \frac{s_{I}}{\sigma \sigma \sigma} + \frac{s_{I}}{r} + \frac{s_{I}}{r} + \frac{s_{Shh}}{r} + \frac{s_{Sh}}{r} + \frac{s$$

 $\sigma = \kappa_{hh\bar{s}_i\bar{s}_i}^2 \hat{\sigma}(m_{\bar{s}_i}) + \left(\kappa_{Shh}^I \kappa_{Stt}^I\right)^2 \hat{\sigma}(m_{S_i}, \Gamma_{S_I}) + \kappa_{hh\bar{s}_i\bar{s}_i} \kappa_{Shh}^I \kappa_{Stt}^I \hat{\sigma}^{int}(m_{s_i}, m_{S_I}, \Gamma_{S_I})$

- couplings: rescaling of the reduced cross-section
- masses, total widths and Lorentz structures: kinematics of the individual subprocess

The total cross-section is constructed by adding a complete set of elements

Luca Panizzi

Simplified models for di-Higgs studies

2 squarks and modified SM couplings

The simplified Lagrangian

• Modified Higgs couplings: $-(\lambda^{SM} + \kappa_{hhh})vh^3 - \frac{1}{\sqrt{2}}(y_t^{SM} + \kappa_{htt})h\bar{t}t$ Additive terms, not multiplicative!

• Trilinear squark-Higgs couplings: $vh(\tilde{q}_1^* \tilde{q}_2^*) \begin{pmatrix} \kappa_{h\tilde{q}\tilde{q}}^{11} & \kappa_{h\tilde{q}\tilde{q}}^{12} \\ \cdot & \kappa_{h\tilde{q}\tilde{q}}^{22} \end{pmatrix} \begin{pmatrix} \tilde{q}_1 \\ \tilde{q}_2 \end{pmatrix}$ • Quadrilinear squark-Higgs couplings: $hh(\tilde{q}_1^* \tilde{q}_2^*) \begin{pmatrix} \kappa_{hh\tilde{q}\tilde{q}}^{11} & \kappa_{hh\tilde{q}\tilde{q}}^{12} \\ \cdot & \kappa_{hh\tilde{q}\tilde{q}}^{22} \end{pmatrix} \begin{pmatrix} \tilde{q}_1 \\ \tilde{q}_2 \end{pmatrix}$

All parameters are kept independent (and real for simplicity)

 $\longrightarrow \kappa_{hh\tilde{q}\tilde{q}}^{12} = 0$ and we do not need to know the electric charge of $\tilde{q}_{1,2}$

What are we looking for?

Analyse entire classes of scenarios (MSSM, NMSSM,...)

Find parameter combinations which maximise signal visibility:
 what can be observed at Run 3 or the high-luminosity upgrade of LHC?

Identify distinct shape features to characterise different scenarios

All with one set of simulated samples

Luca Panizzi

Simplified models for di-Higgs studies

The recipe

1) Deconstruction

Identify all combinations proportional to unique couplings products

2) Database

Simulate individual samples in a $\{m_{\tilde{q}_1}, m_{\tilde{q}_2}\}$ grid and store the samples

3) Recombination/Analysis

Analyse the process for any choice of parameters (masses and couplings) by doing a weighted sum of the deconstructed samples

1) Deconstruction

	Topology type	Feynman diagrams	Amplitude
1	Modified Higgs trilinear coupling	$g \underbrace{ress}_{g \operatorname{\mathfrak{ress}}} \underbrace{t, b}_{t, b} \underbrace{h}_{h} \underbrace{h}_{h}$	$\mathcal{A}_i \propto \kappa_{hhh}$
2	One modified Yukawa coupling	$g \underbrace{\overset{g}{\text{oso}}}_{g \underbrace{t}} \underbrace{\overset{h}{\overset{t}}}_{t} \underbrace{\overset{h}{\overset{f}}}_{h g \underbrace{t}} \underbrace{\overset{f}{\overset{t}}}_{t \underbrace{t}} \underbrace{\overset{h}{\overset{f}}}_{h g \underbrace{t}} \underbrace{\overset{f}{\overset{t}}}_{t \underbrace{t}} \underbrace{\overset{h}{\overset{f}}}_{h g \underbrace{t}} \underbrace{\overset{f}{\overset{f}}}_{t \underbrace{t}} \underbrace{\overset{h}{\overset{f}}}_{t \underbrace{t}} \underbrace{\overset{f}{\overset{f}}}_{t \underbrace{t}} \underbrace{\overset{h}{\overset{f}}}_{t \underbrace{t}} \underbrace{\overset{f}{\overset{f}}}_{t \underbrace{t}} \underbrace{\overset{h}{\overset{f}}}_{t \underbrace{t}} \underbrace{\overset{h}{\overset{h}}}_{t \underbrace{t}} \underbrace{\overset{h}{\overset{h}}} \underbrace{\overset{h}{\overset{h}}} \underbrace{\overset{h}{\overset{h}}}_{t \underbrace{t}} \underbrace{\overset{h}{\overset{h}}} \underbrace{\overset{h}{\overset{h}}} \underbrace{\overset{h}{\overset{h}}} \underbrace{\overset{h}{\overset{h}}} \underbrace{\overset{h}{\overset{h}}} \underbrace{\overset{h}{\overset{h}} \underbrace{\overset{h}{\overset{h}}} \underbrace{\overset{h}{\overset{h}}} \underbrace{\overset{h}{\overset{h}}} \underbrace{\overset{h}{\overset{h}} \underbrace{\overset{h}{\overset{h}}} \underbrace{\overset{h}{\overset{h}} \underbrace{\overset{h}} \underbrace{\overset{h}{\overset{h}}} \underbrace{\overset{h}{\overset{h}} \underbrace{\overset{h}} \underbrace{\overset{h} \overset{h} \overset{h} \overset{h} \overset{h} \overset{h} \overset{h} \overset{h}$	$A_i \propto \kappa_{htt}$
3	Modified Higgs trilinear coupling and modified Yukawa coupling		$A_i \propto \kappa_{hhh} \kappa_{htt}$
4	Two modified Yukawa couplings	$g \underbrace{t}_{g} \underbrace{t}_{g} \underbrace{t}_{f} \underbrace{t}_{t}_{h} h$	$\mathcal{A}_i \propto \kappa_{htt}^2$
5	Bubble and triangle with $h\tilde{t}\tilde{t}$ couplings	$g \xrightarrow{\tilde{t}_i} h $	$\mathcal{A}_i \propto \kappa_{h \bar{t} \bar{t}}^{i i}$
	This class of topologies involves only of due to the absence of FCNCs in stro	liagonal couplings between the Higgs and the ng interactions and the presence of one $h\tilde{t}\tilde{t}$	ne squarks, coupling.
6		$g \xrightarrow{\tilde{t}_i} h \xrightarrow{h} g \xrightarrow{\tilde{t}_i} h \xrightarrow{h} h \xrightarrow{h} h$ $g \xrightarrow{\tilde{t}_i} h \xrightarrow{h} g \xrightarrow{\tilde{t}_i} h \xrightarrow{\tilde{t}_i} h \xrightarrow{h} h$ Higgs and the squarks due to the strong in	$A_i \propto \kappa_{hhh} \kappa_{h\bar{t}\bar{t}}^{ii}$ teraction.
7	Triangle and box with two $h\bar{t}\bar{t}$ couplings	$\begin{array}{c} g & \underset{\hat{l}_1}{\text{goss}} & \overbrace{\tilde{l}_i}^{\tilde{l}_i} & \cdots h \ g \ \underset{\tilde{l}_i}{\text{goss}} & \overbrace{\tilde{l}_i}^{\tilde{l}_i} & \cdots h \\ g & \underset{\tilde{l}_i}{\text{goss}} & \overbrace{\tilde{l}_i}^{\tilde{l}_i} & \cdots h \ g \ \underset{\tilde{l}_i}{\text{goss}} & \overbrace{\tilde{l}_i}^{\tilde{l}_i} & \cdots h \\ g & \underset{\tilde{l}_i}{\text{goss}} & \overbrace{\tilde{l}_i}^{\tilde{l}_i} & \cdots h \end{array}$	$\mathcal{A}_i \propto \kappa_{h \bar{t} \bar{t}}^{ij} ^2$
8	Bubble and triangle with $hh\tilde{t}$ coupling	$g \overset{\tilde{t}_i}{\underset{\tilde{t}_i}{\overset{h g}{\longrightarrow} \overset{\tilde{t}_i}{\overset{\tilde{t}_i}{\overset{\tilde{t}_i}{\longrightarrow} \overset{\tilde{t}_i}{\overset{\tilde{t}_i}{\overset{\tilde{t}_i}{\longrightarrow} \overset{\tilde{t}_i}{\overset{\tilde{t}_i}{\longrightarrow} \overset{\tilde{t}_i}{\overset{\tilde{t}_i}{\overset{\tilde{t}_i}{\longrightarrow} \overset{\tilde{t}_i}{\overset{\tilde{t}_i}{\overset{\tilde{t}_i}{\longrightarrow} \overset{\tilde{t}_i}{\overset{\tilde{t}}}{\overset{\tilde{t}_i}{\overset{\tilde{t}_i}{\overset{\tilde{t}_i}{\overset{\tilde{t}_i}{\overset{\tilde{t}_i}{\overset{\tilde{t}_i}}{\overset{\tilde{t}_i}{\overset{\tilde{t}_i}}{\overset{\tilde{t}_i}{\overset{\tilde{t}}}{\overset{\tilde{t}_i}{\overset{\tilde{t}_i}{\overset{\tilde{t}_i}}{\overset{\tilde{t}_i}{\overset{\tilde{t}_i}}{\overset{\tilde{t}_i}{\overset{\tilde{t}}}{\overset{\tilde{t}_i}{\overset{\tilde{t}_i}{\overset{\tilde{t}}}}{\overset{\tilde{t}_i}{\overset{\tilde{t}}}{\overset{\tilde{t}}}{\overset{\tilde{t}}}{\overset{\tilde{t}}}}{\tilde{t$	$\mathcal{A}_i \propto \kappa_{hh\bar{l}\bar{l}}^{ii}$

8 kind of topologies

Only diagonal couplings between the Higgs and the squarks due to the strong interaction.

1) Deconstruction

Cross-section

$$\sigma = \sigma_B + \sigma_M + \sigma_S + \sigma_{MB}^{\text{int}} + \sigma_{SB}^{\text{int}} + \sigma_{MM}^{\text{int}} + \sigma_{SS}^{\text{int}} + \sigma_{MS}^{\text{int}} + \sigma_{MSB}^{\text{int}}$$

B: SM background, M: modified SM, S: squark propagation MB, SB, MM, SS, MS, MSB: interference between these topologies

1) Deconstruction

Cross-section

$$\sigma = \sigma_B + \sigma_M + \sigma_S + \sigma_{MB}^{\text{int}} + \sigma_{SB}^{\text{int}} + \sigma_{MM}^{\text{int}} + \sigma_{SS}^{\text{int}} + \sigma_{MS}^{\text{int}} + \sigma_{MSE}^{\text{int}}$$

B: SM background, M: modified SM, S: squark propagation MB, SB, MM, SS, MS, MSB: interference between these topologies

One of these terms (interference between diagrams with squarks and the SM):

$$\sigma_{\rm SB}^{\rm int} = \sum_{i=1,2} \left[\kappa_{h\bar{q}\bar{q}}^{ii} \hat{\sigma}_{5B}^{\rm int}(m_{\tilde{q}_i}) + \sum_{j>i} (\kappa_{h\bar{q}\bar{q}}^{ij})^2 \hat{\sigma}_{7oB}^{\rm int}(m_{\tilde{q}_{i,j}}) + \kappa_{hh\bar{q}\bar{q}}^{ii} \hat{\sigma}_{8B}^{\rm int}(m_{\tilde{q}_i}) \right]$$

The first element, graphically:

2) Database generation

Need to perform separate MC simulations for each deconstructed term

1) Use MG5_AMC with dedicated UFO models built in FEYNRULES

2) Associate individual coupling orders to each new coupling

3) Use specific simulation syntax for each process

Examples:	
Background:	generate p p > h h [QCD] QCD 2 ==4 QED 2 ==4
5B:	generate p p > h h [QCD] QCD^2==4 QED^2==3 HSQ1SQ1^2==1

Remove any unwanted particle from propagation and set any other coupling order to 0

2) Database generation

Need to perform separate MC simulations for each deconstructed term

1) Use MG5_AMC with dedicated UFO models built in FEYNRULES

2) Associate individual coupling orders to each new coupling

3) Use specific simulation syntax for each process

Examples:	
Background:	generate p p > h h [QCD] QCD 2 ==4 QED 2 ==4
5B:	generate p p > h h [QCD] QCD^2==4 QED^2==3 HSQ1SQ1^2==1

Remove any unwanted particle from propagation and set any other coupling order to 0

2) Database generation

Need to perform separate MC simulations for each deconstructed term

1) Use MG5_AMC with dedicated UFO models built in FEYNRULES

- 2) Associate individual coupling orders to each new coupling
- 3) Use specific simulation syntax for each process

database content

Luca Panizzi

Simplified models for di-Higgs studies

Here is where THEORY comes to play! so far it was about organising signals according to kinematic features

Now we have everything we need to address multiple goals:

- TH/PH: map theory parameters in the simplified Lagrangian and recast bounds
- **PH/EXP:** global analysis of the parameter space to design new search strategies
- **EXP:** use observed distributions to find the best fit parameters

I'll focus mostly on the second points (Harri will discuss the first)

invariant mass distribution m_{hh}

0) Background distribution (intrinsic background only: $pp \rightarrow hh$)

invariant mass distribution m_{hh}

- 0) Background distribution (intrinsic background only: $pp \rightarrow hh$)
- 1) Distributions from deconstructed elements (*i.e.* with couplings factorised away)

The deconstructed samples do not need to have the same number of MC events

Luca Panizzi

Simplified models for di-Higgs studies

invariant mass distribution m_{hh}

- 0) Background distribution (intrinsic background only: $pp \rightarrow hh$)
- 1) Distributions from deconstructed elements (*i.e.* with couplings factorised away)
- 2) Weighting the distributions with the benchmark couplings and recombine!

The recombination is done bin-by-bin for each distribution

invariant mass distribution m_{hh}

- 0) Background distribution (intrinsic background only: $pp \rightarrow hh$)
- 1) Distributions from deconstructed elements (*i.e.* with couplings factorised away)
- 2) Weighting the distributions with the benchmark couplings and recombine!

Simplified models for di-Higgs studies

- 0) Background distribution (intrinsic background only: $pp \rightarrow hh$)
- 1) Distributions from deconstructed elements (*i.e.* with couplings factorised away)
- 2) Weighting the distributions with the benchmark couplings and recombine!
- 3) Repeat for all deconstructed elements

- 0) Background distribution (intrinsic background only: $pp \rightarrow hh$)
- 1) Distributions from deconstructed elements (*i.e.* with couplings factorised away)
- 2) Weighting the distributions with the benchmark couplings and recombine!
- 3) Repeat for all deconstructed elements

- 0) Background distribution (intrinsic background only: $pp \rightarrow hh$)
- 1) Distributions from deconstructed elements (*i.e.* with couplings factorised away)
- 2) Weighting the distributions with the benchmark couplings and recombine!
- 3) Repeat for all deconstructed elements

- 0) Background distribution (intrinsic background only: $pp \rightarrow hh$)
- 1) Distributions from deconstructed elements (*i.e.* with couplings factorised away)
- 2) Weighting the distributions with the benchmark couplings and recombine!
- 3) Repeat for all deconstructed elements

- 0) Background distribution (intrinsic background only: $pp \rightarrow hh$)
- 1) Distributions from deconstructed elements (*i.e.* with couplings factorised away)
- 2) Weighting the distributions with the benchmark couplings and recombine!
- 3) Repeat for all deconstructed elements

- 0) Background distribution (intrinsic background only: $pp \rightarrow hh$)
- 1) Distributions from deconstructed elements (*i.e.* with couplings factorised away)
- 2) Weighting the distributions with the benchmark couplings and recombine!
- 3) Repeat for all deconstructed elements

- 0) Background distribution (intrinsic background only: $pp \rightarrow hh$)
- 1) Distributions from deconstructed elements (*i.e.* with couplings factorised away)
- 2) Weighting the distributions with the benchmark couplings and recombine!
- 3) Repeat for all deconstructed elements

- 0) Background distribution (intrinsic background only: $pp \rightarrow hh$)
- 1) Distributions from deconstructed elements (*i.e.* with couplings factorised away)
- 2) Weighting the distributions with the benchmark couplings and recombine!
- 3) Repeat for all deconstructed elements

With the same database we can

- analyse the contribution of specific topologies to the total shape
- fully treat any interference effect
- find predictions for any other theoretical scenario with same particle content
- explore the interface between NP effects at low energy and in the EFT limit
- use a semi-analytic approach to find parameters which maximise key features
 excesses, deficits, threshold effects,...

Given an experimental dataset, is it possible to fit the parameters?

Given an experimental dataset, is it possible to fit the parameters?

A testing with our MC sets:

- 1) We generated a benchmark
- 2) "Blinded" the parameters and asked our ATLAS colleague to do the parametric fit

Given an experimental dataset, is it possible to fit the parameters?

A testing with our MC sets:

- 1) We generated a benchmark
- 2) "Blinded" the parameters and asked our ATLAS colleague to do the parametric fit

Given an experimental dataset, is it possible to fit the parameters?

A testing with our MC sets:

- 1) We generated a benchmark
- 2) "Blinded" the parameters and asked our ATLAS colleague to do the parametric fit

But how wrong is this fit?

Given an experimental dataset, is it possible to fit the parameters?

A testing with our MC sets:

- 1) We generated a benchmark
- 2) "Blinded" the parameters and asked our ATLAS colleague to do the parametric fit

Different parameter sets lead to very similar distributions It's not unexpected!

Use combination of observables and machine learning

Simplified models for di-Higgs studies

What is the minimal parameter set to study this process?

What is the minimal parameter set to study this process?

What is the minimal parameter set to study this process?

New particles

- Coloured scalars: {Charge is not important At most 4 particles

What is the minimal parameter set to study this process?

New particles

- Coloured scalars: {Charge is not important At most 4 particles
- Coloured fermions: {Charge is important: mixing with SM quarks At most 4 t' and 2 b' propagators (or viceversa)
- Neutral bosons: At most 2 particles

What is the minimal parameter set to study this process?

New particles

- Coloured scalars: {Charge is not important At most 4 particles
- Coloured fermions: { Charge is important: mixing with SM quarks At most 4 t' and 2 b' propagators (or viceversa)
- Neutral bosons: At most 2 particles

SU(3) representation is not important for MC simulations factorisation of color coefficients in the deconstruction

What is the minimal parameter set to study this process?

New particles

- Coloured scalars: {Charge is not important At most 4 particles
- Coloured fermions: { Charge is important: mixing with SM quarks At most 4 t' and 2 b' propagators (or viceversa)
- Neutral bosons: At most 2 particles

SU(3) representation is not important for MC simulations factorisation of color coefficients in the deconstruction

New couplings

Modified SM couplings: only hhh and htt

• Coloured particles:	Between themselves With the Higgs boson With Higgs and top or bottom (only fermions) With the neutral bosons	
(With the Higgs boson		

Neutral bosons: {
 With the Higgs boson
 With top or bottom
 Total widths are free parameters too!

Conclusions

- Deconstruction with simplified models is powerful for catching NP effects at different energy scales (from low energy to EFT)
- It is not restricted to di-Higgs: it is applicable also to process of production of Higgs with another BSM scalar for example