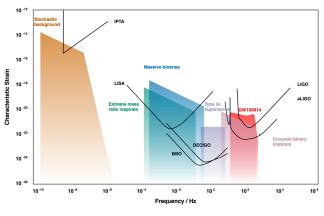
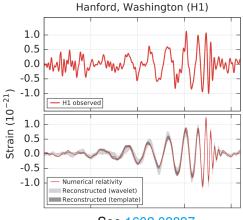

A link between gravitational waves and collider physics

Andreas Ekstedt

Uppsala University

HIPPO meeting 23/12/06


The Cosmological History



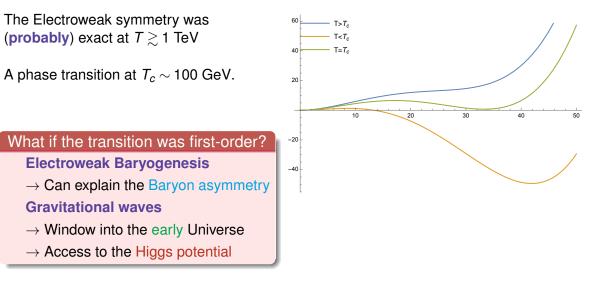
Adapted from 1307.3887

Gravitational waves—A new game in town

Gravitational waves observed by LIGO/VIRGO New experiments are coming

See 1602.03837

See gwplotter.com


This talk

The Electroweak phase transitions

How to get phase-transitions constraints

Connecting phase transitions to simplified models

The Electroweak phase transition in a nutshell

5 of 10

The connection with collider studies

At zero temperature:

At high temperatures:

$$V_{\text{eff}} \subset \underbrace{\frac{1}{2}m_{\text{eff}}^2(T)h^2 + \gamma_{\text{eff}}(T)h^3 + \lambda_{\text{eff}}(T)h^4 + \dots}_{\text{Electromediation}}$$

Electroweak phase transition

In a nutshell

Fundamental theory at zero temperature \rightarrow Classical theory at finite temperature

A crash course in thermal field theory

Phase transitions are fine tuned

 $E \sim m_{\text{eff}}(T) \ll T \rightarrow \text{Everything is classical } n_B(E) \sim \frac{T}{E} \gg 1, \quad n_F(E) \sim 1$

The general idea

Long-range ($L \gg T^{-1}$) fluctuations are small: $\langle \Psi_F^2 \rangle / \langle \Phi_B^2 \rangle \sim n_F / n_B \ll 1$

 \rightarrow Fermions do not enter phase transitions directly

Fermions enter the classical description indirectly:

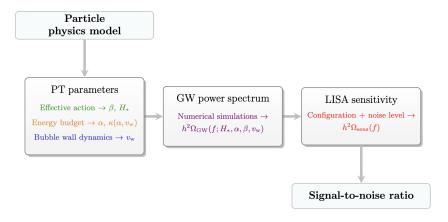
Thermal masses and Couplings

 $\text{Collisions} \rightarrow \text{Generates} \; \textbf{Friction}$

Tiny $L \sim T^{-1}$ fluctuations keep pushing on the scalar field \rightarrow Thermal noise

From the LHC to the Electroweak phase transition So say that you have a model with two fields and a potential:

$$V = \frac{1}{2}m^2h^2 + \frac{1}{2}\mu^2s^2 + \frac{1}{4}\lambda h^4 + \ldots + c_6s^6 + \ldots$$


What do you need to make a phase-transition **prediction**? $m^2, \ldots, \lambda, c_6, g_s, g_w, \ldots$ + Fermions $\rightarrow V_{\text{eff}}$ (without fermions) Cross-sections \rightarrow Friction and viscosity

We can go about it in a few ways

- 1) Start with a fundamental theory $V_{T=0}$, find V_{eff} , and get constraints
- 2) Consider a generic V_{eff} , get constraints, map to many different $V_{T=0}$
- 3) Consider a generic V_{eff} , get constraints, map to a simplified potential at T = 0

 \rightarrow Map the result to almost any models

Typical pipeline

See 1910.13125

Summary

Opportunities:

Only a few scenarios have been studied

Cross-sections enter both di-Higgs and the friction coefficients

Phase-transition predictions can be made (almost) model independently

 \rightarrow Can use simplified models both at zero and at finite temperature

The Higgs potential can be probed in both settings

What's in store:

Automatized gravitational-wave predictions LISA up and running ($\sim 2035 - 2040$)