

MASTERCLASS

Experimental method in High Energy Physics

HOW DO WE CREATE PARTICLES?

Consider a particle **X** with known mass m_x :

• We want to use the **equivalence of energy and mass**

E = m_x c² → We must provide the energy E Consider a particle **X** with known mass m_x :

• We want to use the **equivalence of energy and mass**

 $E = m_x c^2$

 \Rightarrow We must provide the energy E

Idea: Two particles that collide
E ≈ E₁ + E₂
Transformation of energy into mass

Consider a particle **X** with known mass m_x :

• We want to use the **equivalence of energy and mass**

 \implies We must provide the energy E

 $E = m_x c^2$

Idea: Two particles that collide
E ≈ E₁ + E₂
<u>Transformation of energy into mass</u>

Particles need to be accelerated!

• A known principle to you:

when an electric field is generated, charged particles (like electrons) are accelerated along the flux lines

• A known principle to you:

when an electric field is generated, charged particles (like electrons) are accelerated along the flux lines

• A known principle to you:

when an electric field is generated, charged particles (like electrons) are accelerated along the flux lines

• Here we collected E = 1 eV

- Here we collected E = 1 eV
- How do we achieve more energy?

- Here we collected E = 100000 eV
- How do we achieve more energy?

- Here we collected E = 100000 eV
- How do we achieve more energy?

• We can put many of these cells behind each other

extremely long accelerators!

• We can put many of these cells behind each other

Better ideas?

CIRCULAR ACCELERATORS

But how do you force particles on a circular trajectory?

CIRCULAR ACCELERATORS

CIRCULAR ACCELERATORS

What happens in reality:

- straight passages to accelerate
- curved passages to redirect

Do you know any example of circular accelerators?

• Accelerator at the KEK research area in Tsukuba, Japan

 Accelerator at the KEK research area in Tsukuba, Japan ("Nihon" or "Nippon" (日本) in Japanese)

- Accelerator at the KEK research area in Tsukuba, Japan ("Nihon" or "Nippon" (日本) in Japanese)
- Ca. 80 km north of Tokyo

- Accelerator at the KEK research area in Tsukuba, Japan ("Nihon" or "Nippon" (日本) in Japanese)
- Ca. 80 km north of Tokyo (which, by the way, is not the capital)

- Accelerator at the KEK research area in Tsukuba, Japan ("Nihon" or "Nippon" (日本) in Japanese)
- Ca. 80 km north of Tokyo (which, by the way, is not the capital)

Did you know that Japan consists of about **14000** islands?

If you are looking for chopsticks in Japan, you should ask for "**Hashi**"

Naruhito, Japan's Emperor

Currently Japan is in the Reiwa era, which means "**Beautiful armony**"

- Accelerator at the KEK research area in Tsukuba, Japan ("Nihon" or "Nippon" (日本) in Japanese)
- Ca. 80 km north of Tokyo (which, by the way, is not the capital)

- Positrons and electrons are accelerated to 4 and 7 GeV, respectively
- Circumference of ~3 km

- Accelerator at the KEK research area in Tsukuba, Japan ("Nihon" or "Nippon" (日本) in Japanese)
- Ca. 80 km north of Tokyo (which, by the way, is not the capital)

- Positrons and electrons are accelerated to 4 and 7 GeV, respectively
- Circumference of ~3 km

WHAT HAPPENS DURING A COLLISION?

WHICH PARTICLES DO WE SEE?

WHICH PARTICLES DO WE SEE?

WHICH PARTICLES DO WE SEE?

WHICH PARTICLES DO WE SEE?

WHICH PARTICLES DO WE SEE?

WHICH PARTICLES DO WE SEE?

Long-lived particles!

WHAT DO WE ACTUALLY SEE?

Imagine a car crash:

wreckage is flying around and stops somewhere
→ the car's velocity can be deduced

by the wreckage distance to the cars and their color

HOW DO WE SEE PARTICLES?

Build a detector around the collision point

We don't see the particles literally You need to reconstruct them from many small information pieces

• charged particles cause electric signals

B

- charged particles cause electric signals
- from that, tracks can be reconstructed

- charged particles cause electric signals
- from that, tracks can be reconstructed

what's the charge of the red particle?

★ negatively charged

★ positively charged

B

- charged particles cause electric signals
- from that, tracks can be reconstructed

what's the charge of the red particle?

★ negatively charged

★ positively charged

B

- charged particles cause electric signals
- from that, tracks can be reconstructed
- additionally, the vertex can be deduced

PARTICLE IDENTIFICATION

 particles have different masses
→ same velocity leads to different momenta:

 $\mathbf{p} = \mathbf{m}\mathbf{v}$

Example:

football, tennis ball , golf ball and table tennis ball hit a windows same velocity, different damage:

PARTICLE IDENTIFICATION

 particles have different masses
→ same velocity leads to different momenta:

p = **mv**

Example:

football, tennis ball , golf ball and table tennis ball hit a windows same velocity, different damage: which ball is responsible for the damage?

PARTICLE IDENTIFICATION

 particles have different masses
→ same velocity leads to different momenta:

p = mv

Example:

football, tennis ball , golf ball and table tennis ball hit a windows same velocity, different damage: which ball is responsible for the damage?

- In reality we exploit the **Cherenkov Effect:**
 - → charged particles can travel faster than light

 In reality we exploit the Cherenkov Effect:
→ charged particles can travel faster than light

 In reality we exploit the Cherenkov Effect:
→ charged particles can travel faster than light ... in a medium

- In reality we exploit the **Cherenkov Effect:**
 - → charged particles can travel faster than light ... in a medium

$$\frac{c}{n} < v_p < c$$

- In reality we exploit the **Cherenkov Effect:**
 - → charged particles can travel faster than light ... **in a medium**

 $-\frac{c}{n} < v_p < c$ speed of light speed of light i the medium

- In reality we exploit the **Cherenkov Effect:**
 - → charged particles can travel faster than light ... in a medium

 In reality we exploit the Cherenkov Effect:
→ charged particles can travel faster than light ... in a medium

$$\frac{c}{n} < v_p < c$$

ightarrow radiation emitted with a certain angle $heta \propto rac{c}{vn}$

 In reality we exploit the Cherenkov Effect:
→ charged particles can travel faster than light ... in a medium

$$\frac{c}{n} < v_p < c$$

ightarrow radiation emitted with a certain angle $heta \propto rac{c}{vn}$

 $v = \frac{p}{m}$ heavier particles are slower!

• Calorimeter:

most particles deposit their whole energy...

calorimeter				muon detector	

• Calorimeter:

most particles deposit their whole energy...

• Calorimeter:

most particles deposit their whole energy...

... and are stopped here

CALORIMETER AND MUON DETECTOR

• Calorimeter:

most particles deposit their whole energy...

... and are stopped here

• Muon detector:

muons scarcely interact and leave the calorimeter

calorimeter				muon detector

CALORIMETER AND MUON DETECTOR

• Calorimeter:

most particles deposit their whole energy...

... and are stopped here

• Muon detector:

muons scarcely interact and leave the calorimeter

CALORIMETER AND MUON DETECTOR

• Calorimeter:

most particles deposit their whole energy...

... and are stopped here

• Muon detector:

muons scarcely interact and leave the calorimeter, they interact in the muon detector

WHAT'S NEXT?

Why is not enough to just find one event?statistical fluctuations

 \rightarrow every measurement contains

uncertainties and errors

→ the more individual measurements the smaller the overall uncertainty

Let's have a look to some events!

Final energy & momentum Sum?

 $e^+e^- \rightarrow \gamma \gamma$

Current energy & momentum

Time (nanoseconds)

. 393

Long-lived particles!

PARTICLE DECAY: FEW RULES

In reality we exploit the Cherenkov Effect:

 → charged particles can travel
 faster than light

- particles have di
 → same velocity
 momenta:
- In reality we exp
 → charged partic

 particles have different masses
 → same velocity leads to different momenta:

p = **mv**

$$\frac{c}{n} < v_p < c$$

particles have different masses
 → same velocity leads to different momenta:

p = **mv**

- In reality we exploit the Cherenkov Effect:
 - \rightarrow charged particles can travel faster than light in a medium
 - \rightarrow radiation emitted with a certain angle:

$$\frac{c}{n} < v_p < c$$

- In reality we exploit the **Cherenkov Effect:**
 - \rightarrow charged particles can travel

faster than light ... in a medium

 \rightarrow radiation emitted with a certain angle

 In reality we exploit the Cherenkov Effect:
 → charged particles can travel faster than light ... in a medium

$$\frac{c}{n} < v_p < c$$

\rightarrow radiation emitted with a certain angle

