

Solar Neutrinos From XENONnT and Single Photo Electron Calibration of ABALONE

Torben Flehmke PhD at The Oskar Klein Centre

torben.flehmke@fysik.su.se

Section 1 Solar Neutrinos From XENONnT

Solar Neutrinos From XENONnT

Dutline	Component	Expectation	Best Fit
> The XENON Experiment	AC (SR0)	7.5 ± 0.7	7.4 ± 0.7
	AC (SR1)	17.8 ± 1.0	$\textbf{17.9} \pm \textbf{1.0}$
> The ^o B Neutrino Signal	ER	0.7 ± 0.7	$0.5^{+0.7}_{-0.6}$
Backgrounds	Neutron	$0.5^{+0.3}_{-0.2}$	0.5 ± 0.3
≻ Result	Total Background	$26.4^{+1.4}_{-1.3}$	$\textbf{26.3} \pm \textbf{1.4}$
≻ Outlook	⁸ B	$11.9^{+4.5}_{-4.2}$	$10.7^{+3.7}_{-4.2}$
	Observed	37	
	With an expected 38.3 events we saw 37 even		

Reject BG only hypothesis at \Rightarrow 2.73 σ

T.

ī

The XENONnT Detector

Our dual-phase TPC:

- DM interaction produces prompt scintillation light (S1) and electrons
- Electrons drift upwards and produce a second pulse in the gas phase (S2)

The Solar ⁸B Neutrino Signal

- > ⁸B decay produces neutrinos in the sun ⁸B \rightarrow ⁸Be + e⁺ + ν_e
- > Signal nearly identical to the WIMP signal
- Solar ⁸B neutrino flux measured by the SNO experiment and the standard model Xe-CE
 vNS cross section give the expected spectrum on the right

Backgrounds

- ➤ Accidental coincidence (AC)
 - Spurious SPE and small S2 hits after high energy events
- > Surface
 - ➢ Produced by ²¹⁰Pb on the TPC wall
- > Neutron
 - > Radioactivity from detector materials
- ➤ Electronic recoil (ER)
 - From nuclear decay and external

gamma rays

Component	Expectation	Best Fit
AC (SR0)	7.5 ± 0.7	7.4 ± 0.7
AC (SR1)	17.8 ± 1.0	17.9 ± 1.0
ER	0.7 ± 0.7	$0.5^{+0.7}_{-0.6}$
Neutron	$0.5\substack{+0.3 \\ -0.2}$	0.5 ± 0.3
Total Background	$26.4^{+1.4}_{-1.3}$	$\textbf{26.3} \pm \textbf{1.4}$

SNO, 2013

XENON1T, 2021

Result

- > 3.5 ty of exposure gathered in total
- Expected: 26.4 BG + 11.9 ⁸B events
- \succ 37 events measured \rightarrow 2.73 σ

Outlook

- First measurement of CE
 vNS with Xe
 nuclei from a blind search
- Neutrino flux and CEvNS cross section consistent with SNO measurement and SM prediction
- ➤ First step into the neutrino fog
- ➤ More data is being taken → more precise measurements to come

courtesy Ciaran A. J. O'Hare and Dominik Fuchs

Section 2 **Model Independent Single Photon Calibration for ABALONE**

Outline

- > The ABALONE Photosensor
- ➢ SPE Calibration Methods
- > Results
- > Outlook

The ABALONE Photosensor

ABALONE:

radiopure

 \succ

2 main glass components, very

Photocathode

UHV

нv

e

Geiger-mode APD

PMT:

 complex, manual construction, many radioactive materials

2024-10-22 | Torben Flehmke - Solar Neutrinos From XENONnT and Single Photo Electron Calibration of ABALONE

arXiv:2111.02924

Scintillating

windowlet

- Use LED at very low voltage as single photon source
- Find peaks using threshold
- > Fit the distribution with a model

arXiv:2111.02924

The Model Independent Method I

arXiv:1602.03150

Let E[S] and E[B] denote the means of the singal and the background (noise + SiPM DC) distribution.

E[S] = E[S+B] - E[B]

Similar we can calculate the second moments of the distributions.

Take an LED and a noise dataset and integrate a fixed window around the LED peak.

 \rightarrow The mean area of the LED signal

The Model Independent Method II

arXiv:1602.03150

The we can get the mean number of photons in the LED signal (occupancy) using the poisson statistics of the LED photon emission:

 $L(p) = \frac{\lambda^{p} e^{-\lambda}}{p!}$ $\lambda = E[L]$ $\lambda = -\ln(L(0))$

Make a cut on the signal distribution, such that there are no signal events left. Use the shape of the background distribution to correct for empty events above the cut.

arXiv:1602.03150

SPE Area vs LED Voltage

SPE Area vs ABALONE Voltage

Fitting method ABALONE gain data $G = -16.5 + 3.4 \times V$ SPE area [adc*10ns] ABALONE Voltage [kV] arXiv:2111.02924 VABALONE [kV]

Model independent method

2024-10-22 | Torben Flehmke - Solar Neutrinos From XENONnT and Single Photo Electron Calibration of ABALONE

Outlook

This is preliminary, more verification needed. Cautiously optimistic, that the model independent method will also work for ABALONE

- > No reliance on model
- ➤ Inclusion of underamplified PE
- ➤ More robust to noise
- > Computationally less expensive

Thank you for your attention!

