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introduction theory results

Dark matter

http://sci.esa.int/planck ,
https://wiki.cosmos.esa.int/planck-legacy-archive

https://apod.nasa.gov/apod
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introduction theory results

Local distribution of DM
Baxter et al., 2105.00599

nDM ≃
1 GeV
mDM

× 0.3 cm−3

ρ(v) = N exp[−(v + v⊕)
2

v20
] θ(vesc − ∣v + v⊕∣)

vesc = 544 km/s
v⊕ = 250.5 km/s
v0 = 238 km/s

v
→

⊕
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How to detect particle dark matter?
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Direct detection experiments

LUX-ZEPLIN, PandaX-4T, XENONnT, SuperCDMS, ...

GeV+ range of masses (WIMPs):
no success so far
⇒ sub-GeV DM?

nuclear vs. electronic recoil of non-relativistic DM

∆ESM ≤
4µ

(1 + µ)2 E
in
DM ← maximized for µ ≡mSM/mDM = 1

⇒ mSM should be as close to mDM as possible!

⇒ electrons preferable for light DM

what material to use?
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Effective non-relativistic theory for spin-1/2 DM
Catena et al., 2105.02233

v⊥ ≡ p+ p′

2mχ
− k + k′

2me

q · v⊥ en. cons.−−−−−→ 0

χ χ

e− e−

p, s p′, s′

k, r k′, r′

q

gχ

ge

χ χ

e− e−

p, s p′, s′

k, r k′, r′

q

non-relativistic limit
Lorentz (Galilean) invariance

} ⇒ M = ∑i ciOi
14 simple operators
in the leading order

example: scalar coupling

M ≃ −i gχ ge
q2 +M2 4mχme
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Linear response theory
Catena & Spaldin, 2402.06817

another decomposition:

M =∑
i

ciOi

=∑
a

F ss
′

a (q,vχ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
DM physics

Jrr
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a (v⊥e)
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electronic part

, vχ ≡
p

mχ
, v⊥e ≡
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2me

electronic operators:
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Int. rate for bounded electrons & generalized susceptibilities
Catena et al., 1912.08204, Catena & Spaldin, 2402.06817

electronic states ≠ momentum eigenstates

χ χp, s p′, s′

e−i,k e−i′,k′
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crystal
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DM physics

×[material response]

interaction rate per dark particle

Γ(vχ) ∼ ∫
d3q

(2π)3

sum over electronic states
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Theoretical upper bounds on the interaction rate

χ is analytic and causal, so

∫
∞

0

dω

ω
I [4πα
q2
χa†a(ω,q)] =

π

2
[4πα
q2
χa†a(0,q)] ≤

π

2

conclusion: upper bound

material-dependent
exact value →

material-independent
upper bound →

Γa†a = ∫ q4dq ∫
∞
0 dω faa(ω, q)I

4πα
q2
χa†a(q, ωv,q)

Γopt
a†a
= π2 ∫ q

4dqmaxω [ωfaa(ω, q)]

faa(ω, q) ≡ ρ(0)ω (ω; q)F(0)aa (ω, q) + ρ(2)ω (ω; q)F(2)aa (ω, q)
a = 0,A,5k,Mk,Ek

truncated thermal local distribution of DM ⇒ ρ
(0)
ω (ω; q), ρ(2)ω (ω; q)

effective models of DM-e− interactions ⇒ F(0)aa (ω, q), F(2)aa (ω, q)
material science ⇒ I 4πα

q2
χa†a(q, ωv,q)
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Results: methodology

f(mχ) ≡
theor. upper bound
true interaction rate

← (material-independent)
← (material-dependent)

effective models of DM-e− interactions
▸ dark photon
▸ anapole
▸ magnetic dipole
▸ electric dipole

different materials: which is closest to saturating the bound (f(mχ) → 1)
for a given model?
▸ Si, Ge, Xe, Ar
▸ numerical data based on Catena et al., 2105.02233, 2210.07305
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Results
dark photon model Lint = gx χ̄γµχ A′µ ⇒ F00 ∝ (m2A′ + q2)−2 (others 0)

electric dipole model

Lint =
g

Λ
i χ̄σµνγ5χFµν

⇒ F00 ∝ q−2 (others 0)
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Results
magnetic dipole model

Lint =
g

Λ
χ̄σµνχFµν

⇒ F00 ∝ 1 − 4 v2q
m2χ

q2
+ 4 v2

m2χ

q2
,

TrFMM ∝ 8
m2χ

q2
,
1
3
TrF55 ∝ 2

m2χ

m2e
(others vanish)
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Results
anapole model

Lint =
g

2Λ2
χ̄γµγ5χ ∂

νFµν

⇒ F00 ∝
q

4mχ
(vq −

q

4mχ
) + 1
4
v2 ,

TrFMM ∝
3
4
,

1
3
TrF55 ∝

q2

24m2e
(others vanish)
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Summary

effective approach to non-relativistic DM-e− interactions

thank
you!

▸ small set of operators in the leading order

linear response theory

[interaction rate] = ∫ [DM model] × [material response of the detector]

material response → generalized susceptibilities χa†b(ω, q)
Kramers-Kronig relations

f ∶ causal, analytic ⇒ ∫
∞

0

dω

ω
If(ω) = π

2
f(0)

material-independent theoretical upper bound on the interaction rate

results: solids typically better than nobles (excl. mχ ≳ 20 MeV in the anapole
model), but all of them far from the theoretical bound

outlook: new materials?

Partikeldagarna @ Uppsala, 21 October 2024 Michał Iglicki Theor. upper bounds on detector’s response to DM-e− interactions... 14 / 14



introduction theory results

Summary

effective approach to non-relativistic DM-e− interactions
thank
you!

▸ small set of operators in the leading order

linear response theory

[interaction rate] = ∫ [DM model] × [material response of the detector]

material response → generalized susceptibilities χa†b(ω, q)
Kramers-Kronig relations

f ∶ causal, analytic ⇒ ∫
∞

0

dω

ω
If(ω) = π

2
f(0)

material-independent theoretical upper bound on the interaction rate

results: solids typically better than nobles (excl. mχ ≳ 20 MeV in the anapole
model), but all of them far from the theoretical bound

outlook: new materials?

Partikeldagarna @ Uppsala, 21 October 2024 Michał Iglicki Theor. upper bounds on detector’s response to DM-e− interactions... 14 / 14


	introduction
	theory
	results

