

Orbifold stability of asymptotic GUTs

ANCA PREDA

Supervisor: Roman Pasechnik

[arXiv:2409.16137] G. Cacciapaglia, A. Cornell, A. Deandrea, W. Isnard, R. Pasechnik, AP, Z. Wang

Partikeldagarna 2024

The Standard Model (SM)

Introduction

Asymptotic unification

Orbifold stability: results

Conclusions

Tested to high precision but... leaves some open questions: hierarchy problem, charge quantization neutrino mass, dark matter, baryon asymmetry...

Beyond the Standard Model (BSM) physics

Anca Preda, Lund University

Orbifold stability of asymptotic GUTs

Beyond the Standard Model

Introduction

Asymptotic unification

Orbifold stability: results

Conclusions

There are many ways to include extensions

 \Rightarrow new particles, extra dimensions, grand unified theories (GUTs), supersymmetry...

 \Rightarrow our work: GUTs in higher dimensions \equiv asymptotic GUTs¹

Beyond the Standard Model

Asymptotic unification

Orbifold stability: results

Conclusions

```
M_{
m Planck} pprox 10^{18} {
m GeV}
Wh
M_{
m GUT} pprox 10^{16} {
m GeV} \Rightarrow can
(neutrino
```

Why Grand Unification?²

⇒ can explain some of the puzzles (neutrino mass, dark matter...) and more fundamental issues, e.g. charge quantization

...but, GUT scale is very high, orders of magnitude away from hadron colliders

```
M_W \approx 10^2 \text{ GeV}
```

² H. Georgi and S. Glashow, Phys. Rev. Lett., 438 (1974)

Asymptotic Grand Unified Theories (aGUTs)

Introduction

Asymptotic unification

Orbifold stability: results

Conclusions

What we do: standard picture of unification but in higher dimensions

Why we do it:

- \Rightarrow lower GUT scale (no proton decay)
- \Rightarrow less parameters/smaller representations
- \Rightarrow solution to hierarchy problem

Introduction

Asymptotic unification

Orbifold stability: results

Conclusions

Introduction

Asymptotic unification

Orbifold stability: results

Conclusions

• The inverse radius R^{-1} sets the scale of compactification.

Anca Preda, Lund University

³G. Cacciapaglia, arXiv:2309.10098 (2023)

Gauge-Higgs Unification^{4 5}

Introduction

Orbifold stability: results

Conclusions

In asymptotic unification scenarios, a gauge field decomposes

⁴Y. Hosotani, Phys. Lett. B 126 (1983)

⁵ R. Contino,et al, Nucl. Phys. B 671 (2003)

Gauge-Higgs Unification^{4 5}

Introduction

In asymptotic unification scenarios, a gauge field decomposes

⁴Y. Hosotani, Phys. Lett. B 126 (1983)

⁵R. Contino,et al, Nucl. Phys. B 671 (2003)

Gauge-Higgs Unification

Introduction

Asymptotic unification

Orbifold stability: results

Conclusions

 $A_5 \equiv$ scalar embedded in the gauge fields

There will be a scalar potential for A_5 !

...but gauge symmetry forbids the potential at tree level

one loop effective potential⁶

(dictates symmetry breaking, mass of the scalars etc.)

⁶I. Antoniadis, et al, New Journal of Physics 3 (2001)

One loop effective potential

Introduction

Asymptotic unification

Orbifold stability: results

Conclusions

Global minimum of $V_{\text{eff}}^{\text{gauge}}$ must be at 0.

Orbifold stability [arXiv:2409.16137] What we did: Orbifold stability: results Computed the effective potential for general SU(N), Sp(2N) and SO(N) gauge theories Imposed the global minimum constraint Derived orbifold stability conditions based on this constraint

Minimal models

Introduction

Asymptotic unification

Orbifold stability: results

Conclusions

Minimal models that satisfy the orbifold stability criteria

Model	Breaking pattern	Fermions	Fixed point	Gauge-scalar		
SM route (A)						
SU(5)	$G_{\rm SM}$	\checkmark	×	none		
SU(6) (6A')	$G_{\rm SM} imes { m U}(1)$	\checkmark	$n_g = 3$	$(3,1)_{-1/3}$		
SU(6)	$G_{\rm SM} imes { m U}(1)$	×	-	$(3,2)_{-5/3}$		
Sp(10)	$G_{\rm SM} \times {\rm U}(1)$	×	-	$(3,2)_y$		
SO(10)	$G_{\rm SM} imes { m U}(1)$	×	-	$(3,2)_y$		
PS route (B)						
SU(8)	$G_{\rm PS} \times {\rm U}(1)^2$	$\sqrt{*}$	$n_g \leq 3$	(4, 1, 2)		
SO(10)	$G_{\rm PS}$	\checkmark	$2 \le n_g \le 5$	none		

The column **Fermions** indicates whether SM fermions can be embedded in the model, while **Fixed point** concerns the UV behaviour of the models.

Minimal models

Introduction

Asymptotic unification

Orbifold stability: results

Conclusions

Minimal models that satisfy the orbifold stability criteria

Model	Breaking pattern	Fermions	Fixed point	Gauge-scalar			
SM route (A)							
SU(5)	$G_{\rm SM}$	\checkmark	×	none			
SU(6) (6A')	$G_{\rm SM} imes {\rm U}(1)$	\checkmark	$n_g = 3$	$(3,1)_{-1/3}$			
SU(6)	$G_{\rm SM} imes {\rm U}(1)$	×	-	$(3,2)_{-5/3}$			
$\operatorname{Sp}(10)$	$G_{\rm SM} imes {\rm U}(1)$	×	-	$(3,2)_y$			
SO(10)	$G_{\rm SM} imes { m U}(1)$	×	-	$(3,2)_y$			
PS route (B)							
SU(8)	$G_{\rm PS} imes {\rm U}(1)^2$	$\sqrt{*}$	$n_g \leq 3$	(4, 1, 2)			
SO(10)	$G_{\rm PS}$	\checkmark	$2 \le n_g \le 5$	none			

The column **Fermions** indicates whether SM fermions can be embedded in the model, while **Fixed point** concerns the UV behaviour of the models.

Conclusions

Introduction

Asymptotic unification

Orbifold stability: results

Conclusions

- aGUTs as an alternative to standard GUTs
- Viable models have to pass certain criteria \Rightarrow **orbifold stability**
- The criteria of **orbifold stability** helps identify potentially interesting models (*SU*(6), *SU*(8), . . .)
- Systematic classification that discards phenomenologically unrealistic scenarios

Introduction

Asymptotic unification

Orbifold stability: results

Conclusions

Back-up slides

Anca Preda, Lund University

Orbifold stability of asymptotic GUTs

October 20, 2024 13/13

Orbifold stability: SU(N) results

Introduction

Asymptotic unification

Orbifold stability: results

Conclusions

For a general model based on the SU(N) group (e.g SU(5)) we find:

$$SU(N) \rightarrow SU(p) \times SU(q) \times U(1)$$

 $SU(N) \rightarrow SU(p) \times SU(q) \times SU(s) \times U(1)^2$ if $p \ge N/2$

 $SU(N) \rightarrow SU(p) \times SU(q) \times SU(r) \times SU(s) \times U(1)^3$

... which tells us what symmetry breaking scenarios to consider.

Introduction

Asymptotic unification

Orbifold stability: results

Conclusions

For a given field $\Phi\left(x^{\mu},y
ight)$ we can do a Kaluza-Klein decomposition

Decomposition

$$\Phi\left(x^{\mu}, y\right) = \underbrace{\sum_{n=0}^{\infty} \phi_{+}^{(n)}(x^{\mu}) \cos\left(\frac{ny}{R}\right)}_{\text{parity-even}} + \underbrace{\sum_{n=1}^{\infty} \phi_{-}^{(n)}(x^{\mu}) \sin\left(\frac{ny}{R}\right)}_{\text{parity-odd}}$$

- The 4D fields $\phi_{\pm}^{(n)} \equiv$ Kaluza-Klein (KK) modes with mass of n/R.
- The Standard Model fields are the massless zero modes of ϕ_+ .
- For $E \ll 1/R$, the heavy Kaluza-Klein towers are integrated out.

4D effective field theory

Anca Preda, Lund University

Orbifold stability of asymptotic GUTs

