Leptonic decays of pions and kaons in lattice QCD+QED

Nils Hermansson-Truedsson

Higgs Centre for Theoretical Physics, University of Edinburgh

October 21, 2024

Experiment

Standard Model of Elementary Particles

Theory prediction

Indirectly search for new particles with precision calculations

 \longrightarrow If real tension found, search for new particles in direct detection

 \rightarrow Interested in low energies: Non-perturbative effects from QCD!

- Lattice QCD: Non-perturbative ab initio method
- Euclidean, discretised, finite-volume spacetime to calculate

$$\langle \mathcal{O} \rangle = \frac{\int DU \, e^{-S[U]} \, \mathcal{O}[U]}{\int DU \, e^{-S[U]}}$$

- Monte Carlo simulations: Computationally demanding
- Statistical and systematic uncertainties
- Finite lattice spacing, a
- Finite-volume effects
- . . .

Physics: $L \to \infty$, $a \to 0, \ldots$

Figure from Ratti et al., 2021

Flavour physics sector

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Fundamental parameters of the Standard Model: Essential

- A. Complex phase: Matter-antimatter asymmetry of the Universe
- B. Search for new physics by testing unitarity:

$$1 \stackrel{\text{SM}}{=} |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2$$

- Determine $|V_{ud}|$ and $|V_{us}|$
- Tensions with unitarity?

• 1.7–5.6 *σ*

- Depends on the input!
- Need to better control theory/exp. uncertainties

- Precision goal: (Sub-)% level
- Isospin-breaking effects crucial:

QED: $\alpha \neq 0$ QCD: $m_u \neq m_d$

• Consider diagonal $|V_{us}|/|V_{ud}|$: Leptonic decays

• Access $|V_{us}|/|V_{ud}|$ from leptonic kaon/pion decays

Combine experiment and theory (lattice)

$$\frac{|V_{us}|^2}{|V_{ud}|^2} = \frac{\text{Kaon exp.}}{\text{Pion exp.}} \times \frac{f_K^2}{f_\pi^2} \left(1 + \delta R_K - \delta R_\pi\right)$$

• Isospin-breaking corrections in $\delta R_K - \delta R_\pi$: % level precision

[RM123S 2019; Di Carlo, Hansen, NHT, Portelli 2022; RBC/UKQCD(NHT) 2023]

Partikeldagarna 2024

χPT : $\delta R_{K\pi} = -0.0112(21)$ RM123S 19: $\delta R_{K\pi} = -0.0126(14)$

Issue: QED finite-volume effects not sufficiently understood

Simulate at different volumes: Analytical knowledge important

• Correct data with Y(L): $\delta R_P = \delta R_P(L) - Y(L)$

$$Y(L) = \underbrace{Y_0 + Y_{\log} \log(m_P L) + \frac{Y_1}{m_P L}}_{[RM123/S \ 16]} \underbrace{+ \frac{Y_2}{(m_P L)^2} + \frac{Y_3}{(m_P L)^3}}_{[Di \ Carlo, \ Hansen, \ NHT, \ Portelli \ 22/23]} + \dots$$

• Structure dependent: $1/L^2 + 1/L^3$

$$Y_{3} = \frac{32\pi^{2} m_{P}}{f_{P}(1-r_{\ell}^{4})} \left\{ c_{0}(\mathbf{v}_{\ell}) \left[F_{V}^{P} - F_{A}^{P} + 2m_{P}^{2}r_{\ell}^{2} F_{A}^{P'} \right] + c_{0} C_{\ell} \right\}$$

- F_V^P , F_A^P , $F_A^{P'}$ Lattice [RM-123/S 20/22/23, RBC/UKQCD 23], ChPT [Bijnens et al. 92]
- Cannot determine structure dependent C_{ℓ} : Drove uncertainty
- Known finite-volume coefficients $c_j(\mathbf{v}_{\ell})$ at every order
- ${
 m QED}_r$: A new finite-volume QED $\overline{c}_0 = 0$ [Di Carlo, Hansen, NHT, Portelli In Prep.]

- FV momentum $\mathbf{k} = \frac{2\pi \mathbf{n}}{L}$
- Play with action [Davoudi et al. 19]

$$D_{\mu\nu}(k) = \delta_{\mu\nu} \frac{1 + w_{|\mathbf{n}|^2}}{k^2}$$

- Why OK? Only care about IV
- $\operatorname{QED}_{\mathbf{r}} w_{|\mathbf{n}|^2} = \delta_{|\mathbf{n}|,1}/6$

$$\overline{\mathbf{c}}_0 = \underbrace{\mathbf{c}_0}_{=-1} + \sum_{|\mathbf{n}|} w_{|\mathbf{n}|^2} = 0$$

$$Y_{3} = \frac{32\pi^{2} m_{P} \overline{c}_{0}(\mathbf{v}_{\ell})}{f_{P}(1 - r_{\ell}^{4})} \left[F_{V}^{P} - F_{A}^{P} + 2m_{P}^{2} r_{\ell}^{2} F_{A}^{P'} \right]$$

- Searching for/constraining new physics with precision calculations
- Need to understand tensions: CKM matrix unitarity
- \bullet Leptonic decays: Solved bottleneck, $\rm QED_r$
- $\bullet~\text{New}$ RBC-UKQCD calculation with $\ensuremath{\mathrm{QED}_{\mathrm{r}}}$
- Address volume and sub-leading uncertainties: Edinburgh & CERN
- QED_r : General: Beta decays, Matter-antimatter asymmetry
- Relevant for ESS fundamental physics programme See talks tomorrow

- Fysikersamfundet magazine
- https://www.fysikersamfundet.se/fysikaktuellt/
- 4 volumes per year
- Contains articles, book reviews etc.
- If you have an idea about particle physics article: Email

nils.hermansson-truedsson@ed.ac.uk

Backup slides

Boston University

Nobuyuki Matsumoto

BNL and BNL/RBRC

Peter Boyle Taku Izubuchi Christopher Kelly Shigemi Ohta (KEK) Amarji Soni Masaaki Tomii Xin-Yu Tuo Shuhei Yamamoto

University of Cambridge

Nelson Lachini

CERN

Matteo Di Carlo Felix Erben Andreas Jüttner (Southampton) Tobias Tsang

Columbia University

Norman Christ Sarah Fields Ceran Hu Yikai Huo Joseph Karpie (JLab) Erik Lundstrum Bob Mawhinney Bigeng Wang (Kentucky)

University of Connecticut

Tom Blum Jonas Hildebrand

The RBC & UKQCD collaborations

Luchang Jin Vaishakhi Moningi Anton Shcherbakov Douglas Stewart Joshua Swaim

DESY Zeuthen

Raoul Hodgson

Edinburgh University

Luigi Del Debbio Vera Gülpers Maxwell T. Hansen Nils Hermansson-Truedsson Ryan Hill Antonin Portelli Azusa Yamaguchi

Johannes Gutenberg University of Mainz Alessandro Barone

Liverpool Hope/Uni. of Liverpool Nicolas Garron

LLNL Aaron Meyer

.

<u>Autonomous University of Madrid</u> Nikolai Husung

<u>University of Milano Bicocca</u> Mattia Bruno

<u>Nara Women's University</u> Hiroshi Ohki

Peking University

Xu Feng Tian Lin

University of Regensburg

Andreas Hackl Daniel Knüttel Christoph Lehner Sebastian Spiegel

RIKEN CCS

Yasumichi Aoki

University of Siegen

Matthew Black Anastasia Boushmelev Oliver Witzel

University of Southampton

Bipasha Chakraborty Ahmed Elgaziari Jonathan Flynn Joe McKeon Rajnandini Mukherjee Callum Radley-Scott Chris Sachrajda

Stony Brook University

Fangcheng He Sergey Syritsyn (RBRC) • Let us look at angular dependence in $\bar{c}_0(\mathbf{v})$ for $|\mathbf{v}| = 0.999$ ($\approx D_s \rightarrow \mu \nu$ decay)

 $\max \bar{c}_0(\mathbf{v}) \approx 9000$ $\min \bar{c}_0(\mathbf{v}) \approx -800$

Figure from Di Carlo, Lattice 2023

- Divergences but there are magic angles: $\bar{c}_0(\mathbf{v}_{\text{magic}}) = 0$
- Angular average: $\int d\Omega \, ar{c}_0({f v}) \propto ar{c}_0 = 0$ [Davoudi, Harrison, Jüttner, Portelli, Savage 2019]
- Requires many velocities
- Magic velocity seems a reasonable way forward

• What about $|V_{us}|$ and $|V_{ud}|$ from beta decays?

Kaon $(|V_{us}|)$ or neutron $(|V_{ud}|)$

The difficult part...

- Similar decays but spin and mass scales different
- Computational difficulties
- Effective field theory and lattice complementary [Gorchtein et al., 2023]
- Fundamentally difficult due to electromagnetic scattering
- Scattering essential for also studying matter asymmetry

Neutron beta decays at ESS

Figure from ESS

Rich neutron program at ESS also for fundamental physics \longrightarrow CKM matrix, matter asymmetry, dark matter, ...

[Abele et al., 2022]

Figure from [Gorchtein et al., 2023]

Current tension: Neutron lifetime τ_n

$$|V_{ud}|^2 \propto rac{1}{ au_n (1+\lambda^2)(1+\Delta)}$$

 Δ extracted from theory: Isospin-breaking corrections

ESS can measure τ_n

Nils Hermansson-Truedsson (UoE)

- ★ Uppsala skyline by Michael Tompsett. https://wallism.com/si/product/4qGKEaMWdkeR
- ★ Fermilab: https://vms.fnal.gov/gallery/view?id=41
- ★ ESS: https://europeanspallationsource.se/ess-mandate
- Fornal 2023: https://www.mdpi.com/2218-1997/9/10/449