

Resonant or asymmetric: The status of sub-GeV dark matter

arXiv:2405.17548

Taylor R. Gray

In collaboration with: **Sowmiya Balan**, Csaba Balazs, Torsten Bringmann, Christopher Cappiello, Riccardo Catena, Timon Emken, Tomás E. Gonzalo, Will Handley, Quan Huynh, **Felix Kahlhoefer**, and Aaron C. Vincent

Partikeldagarna 2024

Nuclear Recoil Direct Detection Status

- Sensitive to GeV-TeV scale DM masses
- Approaching neutrino "fog"

- Also can be produced through freeze-out
 - Evade Lee-Weinberg bound by introducing new mediator

- DM produced through freeze-out near weak scale
- GeV-TeV scale thermal DM already widely tested

- Also can be produced through freeze-out ٠
 - Evade Lee-Weinberg bound by introducing Ο new mediator
- Escapes nuclear recoil direct detection exps
 - Largely experimentally **unexplored**... 0
 - Electron recoils or accelerator exps Ο

See Michał's talk!!

- DM produced through freeze-out near • weak scale
- GeV-TeV scale thermal DM already widely tested

95% confidence exclusion bound: rate at which the true parameter values are excluded is limited to 5%

GAMBIT arXiv:2012.09874

GAMBIT arXiv:2012.09874

95% confidence exclusion bound: rate at which the true parameter values are excluded is limited to 5%

GAMBIT arXiv:2012.09874

Cosmological Constraints

Relic Density (freeze-out) $\Omega_{DM,obs}h^2 \leq 0.120 \pm 0.001$ Planck 2018 results. VI. Cosmological parameters full-component DM OR sub-component DM

Cosmological Constraints

Relic Density (freeze-out) $\Omega_{DM,obs}h^2 \leq 0.120 \pm 0.001$ Planck 2018 results. VI. Cosmological parameters full-component DM OR sub-component DM

Exotic Energy Injection $DM DM \rightarrow SM SM$ constrained by CMB measurements

Cosmological Constraints

Relic Density (freeze-out) $\Omega_{DM,obs}h^2 \leq 0.120 \pm 0.001$ Planck 2018 results. VI. Cosmological parameters full-component DM OR sub-component DM

> Exotic Energy Injection $DM DM \rightarrow SM SM$ constrained by CMB measurements

Big Bang Nucleosynthesis $DM DM \rightarrow SM SM$

- Alters $N_{eff} = 2.99 \pm 0.17$
- Light element abundances

Astrophysical Constraints

 $\begin{array}{l} X-Rays \\ DM DM \rightarrow e^+e^-, \mu^+\mu^-, \pi^+\pi^- \\ e^-\gamma \rightarrow e^-\gamma \text{ (Inverse Compton Scattering)} \\ up-scatter the low energy photons of the ambient light \end{array}$

Astrophysical Constraints

 $\begin{array}{l} X-Rays \\ DM DM \rightarrow e^+e^-, \mu^+\mu^-, \pi^+\pi^- \\ e^-\gamma \rightarrow e^-\gamma \text{ (Inverse Compton Scattering)} \\ up-scatter the low energy photons of the ambient light \end{array}$

Laboratory Experiment Constraints

Accelerators

Monophoton searches $e^+e^- \rightarrow \gamma A', A' \rightarrow XX$

• BaBar

Fixed Targets

Dark photon production $A' \rightarrow DM$

- LSND
- Mini-BooNE
- NA64

(a) π^0 , η Decay (b) Proton Bremsstrahlung literature our implementation 10^{-3}

 10^{-3}

 $m_{\rm DM}~[{\rm GeV}]$

The status of sub-GeV DM | Taylor R. Gray

 10^{0}

Direct Detection arXiv:2210.07305

obscura software for direct DM searches via nuclear and electron recoils

- XENON1T •
- SENSEI
- **CRESST-III**
- and more ... •

Global Fits of sub-GeV DM

Laboratory Experiment Constraints

Accelerators

Monophoton searches $e^+e^- \rightarrow \gamma A', A' \rightarrow XX$

• BaBar

Fixed Targets

Dark photon production $A' \rightarrow DM$

- LSND
- Mini-BooNE
- NA64

Sub-GeV DM Models

Benchmark models with a A' mediator

Complex Scalar DM $\mathcal{L}_{\phi} = \left|\partial_{\mu}\phi\right|^{2} - m_{DM}^{2}|\phi|^{2} + ig_{DM}A^{\prime\mu}[\phi^{*}(\partial_{\mu}\phi^{*})\phi]$

NOT subject to indirect detection and energy injection

- $\langle \sigma v \rangle_{DM DM \to SM SM} \sim v^2$ (p-wave dominant)
- s-wave forbidden

Sub-GeV DM Models

Benchmark models with a A' mediator

Complex Scalar DM $\mathcal{L}_{\phi} = \left|\partial_{\mu}\phi\right|^{2} - m_{DM}^{2}|\phi|^{2} + ig_{DM}A'^{\mu}[\phi^{*}(\partial_{\mu}\phi^{*})\phi]$

NOT subject to indirect detection and energy injection

- $\langle \sigma v \rangle_{DM DM \to SM SM} \sim v^2$ (p-wave dominant)
- s-wave forbidden

Dirac Fermion DM $\mathcal{L}_{\psi} = \overline{\psi}(i\partial \!\!\!/ - m_{DM})\psi + g_{DM}A'^{\mu}\overline{\psi}\gamma_{\mu}\psi$

subject to strong indirect detection and energy injection constraints

 $\langle \sigma v \rangle_{DM DM \to SM SM} \sim v^0$ (s-wave dominant)

Sub-GeV DM Models

Benchmark models with a A' mediator

Complex Scalar DM $\mathcal{L}_{\phi} = \left|\partial_{\mu}\phi\right|^{2} - m_{DM}^{2}|\phi|^{2} + ig_{DM}A'^{\mu}[\phi^{*}(\partial_{\mu}\phi^{*})\phi]$

NOT subject to indirect detection and energy injection

- $\langle \sigma v \rangle_{DM DM \to SM SM} \sim v^2$ (p-wave dominant)
- s-wave forbidden

Dirac Fermion DM $\mathcal{L}_{\psi} = \overline{\psi}(i\partial \!\!\!/ - m_{DM})\psi + g_{DM}A'^{\mu}\overline{\psi}\gamma_{\mu}\psi$

subject to strong indirect detection and energy injection constraints

 $\langle \sigma v \rangle_{DM DM \to SM SM} \sim v^0$ (s-wave dominant)

How to evade indirect detection constraints? 1. Resonance enhancement: $\epsilon_R \equiv \frac{m_{A'}^2 - 4m_{DM}^2}{4m_{DM}^2} \ll 1$

2. Assymptric:
$$\eta \equiv \frac{n_{DM} - n_{\overline{DM}}}{s} > 0$$

3. Sub-component:
$$f \equiv \frac{\Omega_{DM}h^2}{\Omega_{DM,obs}h^2} < 1$$

The status of sub-GeV DM | Taylor R. Gray

Global Fits of sub-GeV DM: Frequentist analysis

 \mathcal{X}

Global Fits of sub-GeV DM: Frequentist analysis

Dirac DM subject to strong constraints from CMB and X-ray observations

• Requires tuning of m'_A/m_{DM} \rightarrow Relax with **asymmetry**

Dirac DM subject to **strong constraints** from **CMB** and **X-ray** observations

> • Requires tuning of m'_A/m_{DM} \rightarrow Relax with **asymmetry**

> > And Andreas' talk!

Summary

Frequentist and Bayesian global fits of 2 sub-GeV DM models using GAMBIT

• Fermionic DM

- Preferred region is resonant freeze-out
- Or, introduce asymmetry

• Scalar DM

- Weak indirect detection constraints
- Subject to constraints from fixed target/collider experiments

Thank you for listening!

Additional Material

GAMBIT Priors

Table 1. List of model parameters and their ranges. For frequentist scans, the prior is only used to determine the sampling strategy. Our scans also include several nuisance parameters as discussed in the text. The likelihoods that we consider are presented in section 3 and summarized in appendix E.

Parameter name	Symbol	Unit	Range	Prior
Kinetic mixing	κ	_	$[10^{-8}, 10^{-2}]$	logarithmic
Dark sector coupling	$g_{\rm DM}$	_	$[10^{-2}, \sqrt{4\pi}]$	logarithmic
Asymmetry parameter	$\eta_{\rm DM}$	—	$[0, 10^{-9}{ m GeV}/m_{ m DM}]$	linear
Dark matter mass	$m_{\rm DM}$	${\rm MeV}$	[1,1000]	logarithmic
Dark photon mass	$m_{A'}$	MeV	[2,6000] with $m_{A'} \ge 2m_{\rm DM}$	logarithmic
or				
Resonance parameter	ϵ_R	_	$[10^{-3}, 8]$	logarithmic

Frequentist:

arXiv:1705.07959

- Differential evolution sampler
- Profile likelihood
 - (Computationally more expensive)

Bayesian: PolyChord

arXiv:1502.01856

- Nested sampling algorithm
- Posterior distribution of parameters given the prior

Frequentist vs Bayesian

- Parameters are fixed quantities
- Only likelihood matters

- Parameters are random variables w distributions
- Volume of allowed parameter space

(Fine-tuning is penalized)

- For example:
 - η parameter
 - smaller g_{DM} and larger m_{DM}

Global Fits of sub-GeV DM: Bayesian scans

- Fine tuning is penalized
- Highly asymmetric is preferred
 - Relaxes other constraints

Asymmetric full component Dirac fermion DM 30