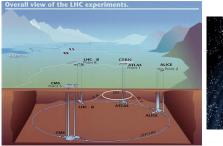
Landau Singularities from Whitney Stratifications

FELIX TELLANDER Mathematical Institute University of Oxford

Partikeldagarna, 22 October 2024

Mathematical Institute

Feynman integrals: one integral but much physics



Many other: shadow integrals for confromal blocks, Witten diagrams, cosmological correlators...

Cross section

Collinear factorization:

$$\sigma_{h_1 h_2 \to n} = \sum_{a,b} \int_0^1 dx_a dx_b f_{a/h_1}(x_a, \mu_F) f_{b/h_2}(x_b, \mu_F) \hat{\sigma}_{h_1 h_2 \to n}(\mu_F, \mu_R)$$

 $+\mathcal{O}(\Lambda_{\rm QCD}/Q)$

Cross section

Collinear factorization:

$$\sigma_{h_1 h_2 \to n} = \sum_{a,b} \int_0^1 dx_a dx_b f_{a/h_1}(x_a, \mu_F) f_{b/h_2}(x_b, \mu_F) \hat{\sigma}_{h_1 h_2 \to n}(\mu_F, \mu_R)$$

 $+ \mathcal{O}(\Lambda_{\rm QCD}/\,Q)$

$$\hat{\sigma}_{h_1h_2 o n}(\mu_F, \mu_R) = rac{1}{2\hat{s}}\int d\Phi_n |\mathcal{M}_{ab o n}|^2$$

Cross section

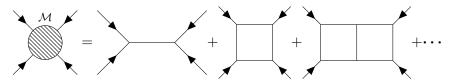
Collinear factorization:

$$\sigma_{h_1 h_2 \to n} = \sum_{a,b} \int_0^1 dx_a dx_b f_{a/h_1}(x_a, \mu_F) f_{b/h_2}(x_b, \mu_F) \hat{\sigma}_{h_1 h_2 \to n}(\mu_F, \mu_R)$$

 $+\mathcal{O}(\Lambda_{\rm QCD}/Q)$

$$\hat{\sigma}_{h_1h_2 o n}(\mu_F,\mu_R) = rac{1}{2\hat{s}}\int d\Phi_n |\mathcal{M}_{ab o n}|^2$$

 ${\cal M}$ is the matrix element and is calculated as a sum of Feynman diagrams:



Every (scalar) Feynman integral is an integral of a "rational" function:

$$\mathcal{I}(D,\nu_1,\ldots,\nu_n;z) = \int_{\mathbb{R}^n_+} \frac{x_1^{\nu_1}\cdots x_n^{\nu_n}}{\mathcal{G}(z,z)^{D/2}} \frac{dx_1}{x_1} \wedge \cdots \wedge \frac{dx_n}{x_n}$$

 $\ensuremath{\mathcal{G}}$ a polynomial determined by the Feynman graph.

Every (scalar) Feynman integral is an integral of a "rational" function:

$$\mathcal{I}(D,\nu_1,\ldots,\nu_n;z) = \int_{\mathbb{R}^n_+} \frac{x_1^{\nu_1}\cdots x_n^{\nu_n}}{\mathcal{G}(z,z)^{D/2}} \frac{dx_1}{x_1} \wedge \cdots \wedge \frac{dx_n}{x_n}$$

 ${\mathcal G}$ a polynomial determined by the Feynman graph.

Questions?

- Mathematical structure function class, PDE, associated polytopes
- Singularity structure Landau singularities, symbol alphabets
- Efficient evaluation closed form and numerical

Singularities are a core ingredient in deriving the CDE [Henn 2013]:

► singularities \Rightarrow symbol alphabet \Rightarrow bootstrap PDE \Rightarrow solve PDE

Singularities are a core ingredient in deriving the CDE [Henn 2013]:

► singularities \Rightarrow symbol alphabet \Rightarrow bootstrap PDE \Rightarrow solve PDE

Idea to derive singularities:

- ► Integrals: {kinematic variables} × {integration variables} → {kinematic variables}
- ► Topological changes of integrand + map = singularities

Objects of interest: singular spaces defined by polynomials, such as the figures below.

Objects of interest: singular spaces defined by polynomials, such as the figures below.

We seek to stratify these spaces by separating them into smooth manifolds which join in a nice way.

More precisely, for $\mathbb{K}=\mathbb{R}$ or $\mathbb{C},$ we will consider algebraic varieties

$$X = \mathbf{V}(I_X) = \mathbf{V}(f_1, \dots, f_r) = \{ p \in \mathbb{K}^n \mid f_1(p) = \dots = f_r(p) = 0 \}.$$

More precisely, for $\mathbb{K} = \mathbb{R}$ or \mathbb{C} , we will consider algebraic varieties

$$X = \mathbf{V}(I_X) = \mathbf{V}(f_1, \dots, f_r) = \{ p \in \mathbb{K}^n \mid f_1(p) = \dots = f_r(p) = 0 \}.$$

When $\mathbb{K} = \mathbb{C}$ a point $p \in X$ is singular if the Jacobian matrix of the f_i drops rank at p.

A *stratification* is a filtration, X_{\bullet} , $\emptyset = X_{-1} \subset X_0 \subset \cdots \subset X_d = X$ of X s.t. $X = \bigcup_i X_i$ and s.t. each $\mathcal{M}_i = X_i - X_{i-1}$ is either empty or smooth, i.e. is a manifold, and has pure dimension.

More precisely, for $\mathbb{K} = \mathbb{R}$ or \mathbb{C} , we will consider algebraic varieties

$$X = \mathbf{V}(I_X) = \mathbf{V}(f_1, \dots, f_r) = \{ p \in \mathbb{K}^n \mid f_1(p) = \dots = f_r(p) = 0 \}.$$

When $\mathbb{K} = \mathbb{C}$ a point $p \in X$ is singular if the Jacobian matrix of the f_i drops rank at p.

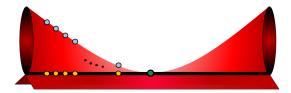
A *stratification* is a filtration, X_{\bullet} , $\emptyset = X_{-1} \subset X_0 \subset \cdots \subset X_d = X$ of X s.t. $X = \bigcup_i X_i$ and s.t. each $\mathcal{M}_i = X_i - X_{i-1}$ is either empty or smooth, i.e. is a manifold, and has pure dimension. We call the connected components of \mathcal{M}_i *strata*.

Additionally: want decomposition $X = \sqcup_i \mathcal{M}_i$ to be *equisingular*, i.e. the neighbourhood in X of any 2 points of a strata are "similar".

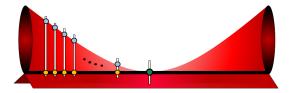
For X_{\bullet} to be a Whitney Stratification these strata must satisfy Condition B: for each pair of strata $M, N \subset X$ and a point $y \in N$



For X_{\bullet} to be a Whitney Stratification these strata must satisfy Condition B: for each pair of strata $M, N \subset X$ and a point $y \in N$ for any sequences $\{x_i\} \subset M, \{y_i\} \subset N$, both converging to y



For X_{\bullet} to be a Whitney Stratification these strata must satisfy Condition B: for each pair of strata $M, N \subset X$ and a point $y \in N$ for any sequences $\{x_i\} \subset M, \{y_i\} \subset N$, both converging to yif secant lines $[x_i, y_i] \to \ell$



For X_{\bullet} to be a Whitney Stratification these strata must satisfy Condition B: for each pair of strata $M, N \subset X$ and a point $y \in N$ for any sequences $\{x_i\} \subset M, \{y_i\} \subset N$, both converging to yif secant lines $[x_i, y_i] \to \ell$ and tangent planes $T_{x_i}M \to T$ then $\ell \subset T$

For X_{\bullet} to be a Whitney Stratification these strata must satisfy Condition B: for each pair of strata $M, N \subset X$ and a point $y \in N$ for any sequences $\{x_i\} \subset M, \{y_i\} \subset N$, both converging to yif secant lines $[x_i, y_i] \to \ell$ and tangent planes $T_{x_i}M \to T$ then $\ell \subset T$

Theorem (H. Whitney, Annals of Math., 1965)

A stratification where all strata pairs satisfy Condition B exists for all algebraic varieties. Further, Condition B implies equisingularity.

For X_{\bullet} to be a Whitney Stratification these strata must satisfy Condition B: for each pair of strata $M, N \subset X$ and a point $y \in N$ for any sequences $\{x_i\} \subset M, \{y_i\} \subset N$, both converging to yif secant lines $[x_i, y_i] \to \ell$ and tangent planes $T_{x_i}M \to T$ then $\ell \subset T$

Theorem (H. Whitney, Annals of Math., 1965)

A stratification where all strata pairs satisfy Condition B exists for all algebraic varieties. Further, Condition B implies equisingularity.

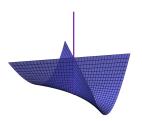
Goal: given equations defining X efficiently compute a Whitney stratification (compute = find equations for each X_i).

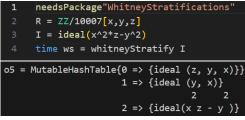
Example: Algorithm Applied to the Whitney Umbrella

Several algorithms to compute Whitney stratification have been proposed in the past [Mostowski & Rannou 1991, Rannou 1998, Đinh & Jelonek 2021)]; previous methods have proved impractical on even the smallest examples. http://martin-helmer.com/Software/WhitStrat/index.html

Example: Algorithm Applied to the Whitney Umbrella

Several algorithms to compute Whitney stratification have been proposed in the past [Mostowski & Rannou 1991, Rannou 1998, Đinh & Jelonek 2021)]; previous methods have proved impractical on even the smallest examples. http://martin-helmer.com/Software/WhitStrat/index.html





Time: 0.09 seconds, new unpublished improvements, 0.03 seconds

Question: we can stratify real and complex varieties, how about maps?

Question: we can stratify real and complex varieties, how about maps?

Map Stratification:

Let X, Y be algebraic varieties and $f: X \to Y$ an algebraic map. A stratification of f, is a Whitney stratification of X and Y so that for every strata S of X there is a strata R of Y such that $f(S) \subset R$ and the derivative, $d(f|_S)$, is surjective where $f|_S$ is the restriction $f|_S: S \to R$.

Question: we can stratify real and complex varieties, how about maps?

Map Stratification:

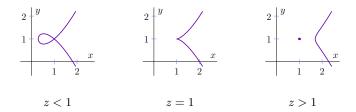
Let X, Y be algebraic varieties and $f: X \to Y$ an algebraic map. A stratification of f, is a Whitney stratification of X and Y so that for every strata S of X there is a strata R of Y such that $f(S) \subset R$ and the derivative, $d(f|_S)$, is surjective where $f|_S$ is the restriction $f|_S: S \to R$.

Consequence*: If f is proper: for q, q' in the same stratum N of Y the fibers $f^{-1}(q)$ and $f^{-1}(q')$ have the same topology (i.e. stratified homeomorphism type). This can also be extended to certain dominant maps $f : X \to Y$ in a reasonable way.

Suppose we wish to study the changes in topology of the curve in \mathbb{R}^2 defined by the parametric polynomial

$$f_z(x, y) = (y - 1)^2 - (x - z)(x - 1)^2$$

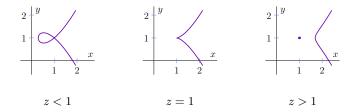
in variables x, y with parameter z.



Suppose we wish to study the changes in topology of the curve in \mathbb{R}^2 defined by the parametric polynomial

$$f_z(x, y) = (y - 1)^2 - (x - z)(x - 1)^2$$

in variables x, y with parameter z.



Take $X = \mathbf{V}(f) \subset \mathbb{R}^3$. It is equivalent to ask when the fibers of the projection map $\pi : X \to \mathbb{R}_z$ change topology.

In this case the stratification of the map $\pi : X \to \mathbb{R}_z$ is given by computing a Whitney stratification of X in \mathbb{R}^3 .

In this case the stratification of the map $\pi : X \to \mathbb{R}_z$ is given by computing a Whitney stratification of X in \mathbb{R}^3 .

It's Whitney stratification is

$$\{(1,1,1)\} \subset \mathbf{V}(x-1,y-1) \subset X.$$

Hence the topology of the curve changes at z = 1.

Oxford Mathematics

Singularities of Feynman Integrals

The Landau singularities of a Feynman integral is a variety in the space of parameters z for which the solution to the Feynman integral fails to $\int_{\mathbb{R}^{|E|}_+} \frac{1}{\mathcal{G}^{D/2}} \left(\prod_{e \in E} \frac{x_e^{\nu_e - 1}}{\Gamma(\nu_e)} dx_e\right)$ be an analytic function.

Singularities of Feynman Integrals

The Landau singularities of a Feynman integral is a variety in the space of parameters z for which the solution to the Feynman integral fails to $\int_{\mathbb{R}^{|E|}_+} be$ an analytic function.

$$\frac{1}{\mathcal{G}^{D/2}}\,\left(\prod_{e\in E}\frac{x_e^{\nu_e-1}}{\Gamma(\nu_e)}dx_e\right)$$

For $\mathcal{G}_h := \mathcal{U}x_0 + \mathcal{F}$ we define:

Definition (Helmer, Papathanasiou, FT, 2024)

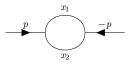
Set $X = \mathbf{V}(x_0 \cdots x_E \mathcal{G}_h) \subset \mathbb{P}_x^{|E|} \times \mathbb{C}_z^m$, set $Y := \mathbb{C}_z^m$ and consider the projection map $\pi : X \to Y$. The Landau variety is the variety Y_{m-1} appearing in the unique minimal Whitney stratification $(X_{\bullet}, Y_{\bullet})$ of the map π .

Note*: We are compactifying the integration domain by moving from $\mathbb{R}^{|E|}_+$ to the projective simplex

 $\mathbb{P}^{|E|}_{+} := \{ [x_0 : \dots : x_{|E|}] \in \mathbb{P}^{|E|} \mid x_e \ge 0 \ \forall \ e = 0, 1, \dots, |E| \}.$

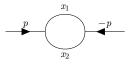
Example: one-loop bubble

For the bubble graph we have: $\begin{aligned} \mathcal{G}_h &= x_0(x_1 + x_2) + (m_1^2 + m_2^2 - p^2)x_1x_2 + \\ m_1^2x_1^2 + m_2^2x_2^2. \end{aligned}$ Take $X = \mathbf{V}(x_0x_1x_2\mathcal{G}_h) \subset \mathbb{P}^2 \times \mathbb{C}^3$ and let $Y = \mathbb{C}^3$ be the space of kinematic parameters.



ters.

For the bubble graph we have: $\begin{aligned} \mathcal{G}_h &= x_0(x_1 + x_2) + (m_1^2 + m_2^2 - p^2)x_1x_2 + \\ m_1^2x_1^2 + m_2^2x_2^2. \end{aligned}$ Take $X = \mathbf{V}(x_0x_1x_2\mathcal{G}_h) \subset \mathbb{P}^2 \times \mathbb{C}^3$ and let $Y = \mathbb{C}^3$ be the space of kinematic parame-



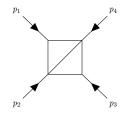
ters.

The (minimal) Whitney stratification $(X_{\bullet}, Y_{\bullet})$ of the corresponding projection map $\pi: X \to \mathbb{C}^3$ gives $Y_3 = Y = \mathbb{C}^3$ and,

$$\begin{split} Y_2 = & \mathbf{V}(m_1^2) \cup \mathbf{V}(m_2^2) \cup \mathbf{V}(p^2) \cup \mathbf{V}(p^4 + m_1^4 + m_2^4 - 2p^2 m_1^2 - 2p^2 m_2^2 - 2m_1^2 m_2^2), \\ Y_1 = & \mathbf{V}(p^2, m_1^2 - m_2^2) \cup \mathbf{V}(m_2^2 - p^2, m_1^2) \cup \mathbf{V}(m_2^2, m_1^2 - p^2) \\ & \cup \mathbf{V}(p^2, m_1^2) \cup \mathbf{V}(p^2, m_2^2) \cup \mathbf{V}(m_2^2, m_1^2), \\ Y_0 = & \mathbf{V}(p^2, m_1^2, m_2^2). \end{split}$$

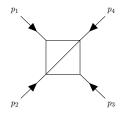
 Y_2 is the Landau variety.

Example: two-loop slashed box



All
$$m_e = 0$$
, $p_1^2 = p_2^2 = 0$ and p_3^2 , $p_4^2 \neq 0$.

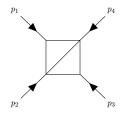
Example: two-loop slashed box



All $m_e=0$, $p_1^2=p_2^2=0$ and $p_3^2, \, p_4^2\neq 0$. The Landau variety consists of 9 components:

$$\begin{split} Y_3 = & \mathbf{V}(p_3^2) \cup \mathbf{V}(s) \cup \mathbf{V}(st + t^2 - tp_3^2 - tp_4^2 + p_3^2p_4^2) \cup \mathbf{V}(p_4^2 - s - t) \cup \mathbf{V}(t - p_3^2) \\ & \cup \mathbf{V}(t - p_4^2) \cup \mathbf{V}(s^2 - 2sp_3^2 + p_3^4 - 2sp_4^2 - 2p_3^2p_4^2 + p_4^4) \cup \mathbf{V}(t) \cup \mathbf{V}(p_4^2). \end{split}$$

Example: two-loop slashed box



All $m_e=0$, $p_1^2=p_2^2=0$ and $p_3^2, \, p_4^2\neq 0$. The Landau variety consists of 9 components:

$$\begin{split} Y_3 = & \mathbf{V}(p_3^2) \cup \mathbf{V}(s) \cup \mathbf{V}(st + t^2 - tp_3^2 - tp_4^2 + p_3^2p_4^2) \cup \mathbf{V}(p_4^2 - s - t) \cup \mathbf{V}(t - p_3^2) \\ & \cup \mathbf{V}(t - p_4^2) \cup \mathbf{V}(s^2 - 2sp_3^2 + p_3^4 - 2sp_4^2 - 2p_3^2p_4^2 + p_4^4) \cup \mathbf{V}(t) \cup \mathbf{V}(p_4^2). \end{split}$$

The component $p_4^2 - s - t$ is missed by the recently proposed principal Landau determinant.

- Landau singularities are calculated by the Whitney stratification of a map.
- Code available at: http:

//martin-helmer.com/Software/WhitStrat/index.html

- Landau singularities are calculated by the Whitney stratification of a map.
- Code available at: http: //martin-helmer.com/Software/WhitSt

//martin-helmer.com/Software/WhitStrat/index.html

Thank you!