Beyond simplified models;

ATLAS supersymmetry searches re-interpreted in the pMSSM framework

Ellen Riefel Stockholm University October 22nd 2024

University

Partikeldagarna 2024

Where is supersymmetry...?

SUSY?

Where have we searched for SUSY?

And where else could it be?

Source

Many searches are done in ATLAS

Interpretations of search results assume **simplified models**

Many searches are done in ATLAS

Interpretations of search results assume **simplified models**

Let's complicate life...

- Neutralinos and charginos not pure bino/wino/higgsino states
 - → More complicated decays, no 100% branching ratios, cascade decays, ...
- Some external measurements can indirectly constrain SUSY models, but multiple sparticles and couplings could contribute to a single measurement
 - \rightarrow Take this better into account with more complex

models

Phenomenological MSSM (pMSSM) pMSSM provides a framework to explore more complex SUSY models

The plan

1) Scan pMSSM parameters to obtain possible models

- 2) Run models through pMSSMFactory to test if they are excluded by current set of ATLAS SUSY analyses
- 3) Apply constraints from external measurements on models

<u>Goal: Test the pMSSM parameter space with existing ATLAS</u> <u>searches and external measurements and find gaps in our</u> <u>sensitivity</u>

Constraints from external measurements

Constraint	Lower bound	Upper bound	Notes
Preselection			
m(h)	120 GeV	130 GeV	Conservative approach based on a 125 GeV Higgs
$m(\tilde{\chi}_1^{\pm})$	90 GeV		Combined LEP chargino constraint (https://lepsusy.web.cern.ch)
Flavour			
$BR(b \rightarrow s\gamma)$	2.87×10^{-4}	4.11×10^{-4}	2022 PDG average [44]
$BR(B_s \to \mu \mu)$	2.19×10^{-9}	3.83×10^{-9}	Most recent LHCb result [45]
$BR(B^+ \to \tau \nu)$	5.80×10^{-5}	1.60×10^{-4}	2022 PDG average [44]
EW precision			
δρ	-0.00047	0.00172	Updated global electroweak fit by GFitter group [46]
-			(not including CDF W-mass measurement [47])
$\Gamma_{\rm inv}(Z)$		2 MeV	Precision electroweak measurements on the Z-resonance from experiments
			at the SLC and LEP colliders [48].
m(W)	80.353 GeV	80.401 GeV	2022 PDG result (excluding CDF W-mass measurement [47]) [44]
m(W)(extended)	80.346 GeV	80.408 GeV	2022 PDG result (excluding CDF W-mass measurement [47]) [44]
			but with the 2σ window expanded by 6 MeV to allow for uncertainty due
			to the top-quark mass in the MSSM Higgs calculation [49]
m(W) (inc. CDF)	80.4147 GeV	80.4523 GeV	2022 PDG result (including CDF W-mass measurement [47]) [44]
Dark matter			
DM relic density		0.12	Latest bound from Planck [50]
DD $\sigma_{ m Spin-independent}$			Exclusion contour from the LZ collaboration [51]
DD $\sigma_{\text{Spin-dependent}}$			Exclusion contour from PICO-60 [52]

Four complimentary scans

[1] arXiv:2402.01392v2

Four different scans

- [°] Electroweak scan: focus on electroweak production [1]
- General scan: all production channels (strong & electroweak)
- ^o 3rd generation scan: production of stop/sbottom pair production
- Gauge-mediated SUSY breaking: electroweak production with extra massless gravitino from gauge-mediated SUSY breaking as lightest supersymmetric particle

Four complimentary scans

[1] arXiv:2402.01392v2

- Four different scans
 - [°] Electroweak scan: focus on electroweak production
 - <u>General scan: all production channels</u>
 - ^o 3rd generation scan: production of stop/sbottom pair production
 - Gauge-mediated SUSY breaking: electroweak production with extra massless gravitino from gauge-mediated SUSY breaking as lightest supersymmetric particle
- Third generation squarks interesting because light stop and sbottom usually required to have a somewhat natural small Higgs mass that agrees with observation

3G scan parameters

- Get pMSSM models by randomly sampling over ranges (with flat prior)
- Parameter ranges based on:
 - Kinematically accessible at LHC
 Fixed light squarks at 5 TeV (no stop to squark decay)
 - Reduced max. value of stop mass
 - Fixed gluino mass at 3 TeV so does not take part in production and decay

	Table 1: 3G general scan ranges					
	Parameter Min value Max value		Max value	Note		
	$m_{\tilde{L_1}}(=m_{\tilde{L_2}})$	0 TeV	2 TeV	Left-handed slepton (first two gens.) mass		
	$m_{\tilde{e_1}}(=m_{\tilde{e_2}})$	$0 \mathrm{TeV}$	2 TeV	Right-handed slepton (first two gens.) mass		
	$m_{\tilde{L_2}}$	0 TeV	2 TeV	Left-handed stau doubles mass		
	$m_{ ilde{e_3}}$	0 TeV	$2 \mathrm{TeV}$	Right-handed stau mass		
	$m_{\tilde{O}_1}(=m_{\tilde{O}_2})$	5 TeV	5 TeV	Left-handed squark (first two gens.) mass		
_	$m_{\tilde{u_1}}(=m_{\tilde{u_2}})$	5 TeV	5 TeV	Right-handed up-type squark (first two gens.) mass		
	$m_{\tilde{d}_1}(=m_{\tilde{d}_2})$	5 TeV	5 TeV	Right-handed down-type squark (first two gens.) mass		
	$m_{\tilde{Q}_3}$	$0 {\rm TeV}$	2 TeV	Left-handed squark (third gen.) mass		
	$m_{ ilde{u_3}}$	0 TeV	2 TeV	Right-handed top squark mass		
	$m_{ ilde{d}_3}$	0 TeV	2 TeV	Right-handed bottom squark mass		
	$ M_1 $	0 TeV	2 TeV	Bino mass parameter		
	$ M_2 $	0 TeV	2 TeV	Wino mass parameter		
	$ \mu $	0 TeV	2 TeV	Bilinear Higgs mass parameter		
↗	M_3	3 TeV	3 TeV	Gluino mass parameter		
	$ A_t $	0 TeV	$8 {\rm TeV}$	Trilinear top coupling		
	$ A_b $	0 TeV	2 TeV	Trilinear bottom coupling		
	$ A_{\tau} $	$0 \mathrm{TeV}$	2 TeV	Trilinear τ lepton coupling		
	M_A	$0 \mathrm{TeV}$	5 TeV	Pseudoscalar Higgs boson mass		
	an eta	1	60	Ratio of Higgs vacuum expectation values		

* exclusion contour from ArXiv:2012.03799v2

Results

Models after basic selection

Models after external constraints

Fraction of excluded pMSSM models agrees well with ATLAS exclusion contour

Removed models mainly due to flavour constraints (BR($b \rightarrow s\gamma$))

m(X̃⁰) [GeV]

1400

1200

1000

800

600

400

200

Summary

- The pMSSM parameter space is scanned for viable models
- The models are tested for exclusion by ATLAS searches and by other measurements
- The exclusion of pMSSM models generally agrees well with exclusion from ATLAS searches based on simplified models
- Low mass stops and sbottoms are mostly excluded, but there are exceptions

Outlook

- What kind of pMSSM models are not excluded?
- Improving the model sampling \rightarrow ML-guided techniques
- More pMSSM scans (long lived particles, r-parity violating models, ...)?

Stockholm University

* exclusion contour from ArXiv:2012.03799v2

Results

Models after basic selection

Models after external constraints

Low mass stops and sbottoms mostly excluded, but there are some exceptions where models with rather light stops and sbottoms survive all constraints

pMSSM

- R-parity conserving MSSM has ~120 free parameters
- pMSSM assumptions to go to 19 free parameters
 - R-parity is exactly conserved
 - No sources of CP violation exist beyond the ones in the CKM matrix
 - Minimal flavour violation is imposed at EW scale
 - The first two generations of squarks and sleptons with the same quantum numbers are degenerate, and their Yukawa couplings are too small to affect sparticle production or precision observables
 - The LSP is the lightest neutralino

• 19 parameters:

- $^\circ$ $\,$ $\,$ Bino, wino and gluino masses $M_{1,2,3}$
- Higgsino mass parameter μ
- Ratio of Higgs vevs for the two doublets $tan\beta$
- Pseudoscalar Higgs mass m_A
- 10 sfermion masses
- ° 3^{rd} generation trilinear couplings of $b/t/\tau$

pMSSM Factory

Model exclusion

- After models are generated, run through pMSSMFactory and see how many models would be excluded by analyses
- 3G analyses considered:
 - 1) SUSY-2018-31 SbottomMultiB2018
 - 2) SUSY-2018-40 SbottomTau2018
 - 3) SUSY-2018-07 StopOneLepton2018
 - 4) SUSY-2019-18 StopStau2018
 - 5) SUSY-2018-12 StopZeroLepton2018
 - 6) SUSY-2018-08 StopTwoLepton 2018
 - 7) SUSY-2018-21 StopZ2018 & Stoph2018

October 2024

Model distribution

Model generation

٠

Requirement	# of model points (eff)	
All	2,970,000	
Programs ran	321,767	
Neutrino LSP	169,416	Bino-like: 32.6% Wino-like: 29.6% Higgsino-like: 37.8%
120 < Higgs mass < 130 GeV	86,240	Bino-like: 32.5% Wino-like: 29.5% Higgsino-like: 37.9%
Chargino mass > 90 GeV	138,536	
All above	69,706	Bino-like: 38.2% Wino-like: 27.3% Higgsino-like: 34.5%

Efficiency = 2.3%

Number of models surviving:

- Preselection: Higgs mass, neutralino LSP & LEP constraint \rightarrow 60,639
- Preselection and external constraints without flavour → 13,797
 - Preselection and all external constraints \rightarrow 4,260
 - Preselection and all external constraints without b \rightarrow sy \rightarrow 10,716
- Preselection, flavour and EW precision
 → 10,487