Hannah Herde, on behalf of Swedish Collaborators in LDMX

Sweden in LDNX Status as of Partikeldagarna 2024

Making Light Dark Matter

LDMX: Fixed-target detector at SLAC

Parasitic beam harvesting electrons *between* bunches delivered for y physics at SLAC's LCLS-II

8 GeV electrons

H. Herde (Lund)

Linac to End Station A (LESA): 8 GeV

Low current

Measure each incoming and outgoing electron

High repetition rate

- 37 MHz bucket frequency \rightarrow ~10¹⁴ electrons on target in a year within 1-2 years
 - Under construction right now

Wide physics potential Measure momentum before/after target & energy

e

SM (QED) Bremsstrahlung

H. Herde (Lund)

- Other mediators to Dark Sector
- Millicharged particles
- Inelastic DM
- SIMPs
- Freeze-in DM
- ALPs
- Photo-production of vector mesons mixing with A' \bullet
- Long-lived particles (visible & invisible signatures)
- Electro-nucleon cross section measurements
 - Key for neutrino program

arXiv:2112.02104; arXiv:2203.08192; Phys. Rev. D 99, 075001 (arXiv:1807.01730) ; Phys. Rev. D 101, 053004 (arXiv:1912.06140)

Design driver: Missing momentum signatures

H. Herde (Lund)

LDMX sub-detectors overlaid with an invisible DM signature

Modified from Snowmass 2021 LDMX status and prospects, fig 1, https://arxiv.org/abs/2203.08192

Sub-detectors work together for zero-background

SM Bremsstrahlung

Photon conversions to muon pairs

H. Herde (Lund)

Trident

Hadronic production in the ECal

Neutral hadron production

Kaon production (example)

Sub-detectors work together for zero-background

H. Herde (Lund)

Zero background remaining:

 \rightarrow at 4 GeV with ~10¹⁴ electrons

on target

A High Efficiency Photon Veto for the Light Dark Matter experiment, JHEP 04, 003 (2020).

\rightarrow at 8 GeV with ~10¹⁴ electrons

on target

Photon-rejection power of the Light Dark Matter eXperiment in an 8 GeV beam, JHEP 12, 092 (2023). (F LunDMX: E. Wallin, R. Pöttgen)

LDMX detector Combine technologies from other operational/planned detectors

H. Herde (Lund)

Image sources

H. Herde (Lund)

LUND UNIVERSITY

LunDMX as part of KAW Light Dark Matter project Partnership with Chalmers University of Technology: R. Catena, T. Gray

LDMX	<section-header><section-header><section-header></section-header></section-header></section-header>	 Model buil GAMBIT: G Live at Particular Michał to DM-
<section-header><section-header><section-header></section-header></section-header></section-header>	<section-header></section-header>	 Andrea Taylor (matter) KAW-LDN

Contraction of the second seco

- ding for current & future fixed-target experiments
- lobal and Modular BSM Inference Tool
- tikeldagarna:
- Iglicki, <u>Theoretical upper bounds on detector's response</u> e interactions in direct searches for sub-GeV dark matter
- s Lund, On the dark matter origin of a LDMX signal
- Gray, <u>Resonant or asymmetric: The status of sub-GeV dark</u>
- bibliography

Simulation: Integrating PYTHIA and GEANT4 LunDMX: E. Elén, L. S. Pico

Collider experiment with Beamline Beampipe

Collisions isolated from detector

- Aiming for model flexibility within GEANT4 itself

H. Herde (Lund)

Fixed target experiment like LDMX

Target *inside* detector structure \rightarrow Beam sees material *before* target

Example: Embed dark photon collisions inside simulated detector volume

Handling multiple electrons-on-target simultaneously LunDMX: L. K. Bryngemark

Poisson distributions of electrons in LESA beam bunches

H. Herde (Lund)

- Default LDMX run plan: Trigger only when 1
 electron-on-target at a time
 - $\mu_{Poisson} = 1: \sim 37\%$ beamtime usable
- Studying how to distinguish multiple simultaneous electrons-on-target
 - Enable significantly faster data-taking
 - Example: $\mu_{Poisson} = 2$
 - Up to 5e per bunch
 - Runtime F x 5
 - Less runtime → Reduced environmental footprint (<u>R. Pöttgen's talk</u>)

- Testbeam design, operation, and analysis
- H. Herde (Lund)

Contribution summary

- HCal design and performance
- HCal readout electronics design, test stand
- HCal and trigger scintillator testbeam design, c
- Generator integration
- Multi-electron triggering and analysis
- lacksquare
- software co-coordinator (L. K. Bryngemark), Testbeam co-coordinator (H. Herde)
- 18 BSc/MSc student theses since 2019

	Inut a Male Tour	and Alice Penberg dation Stockhol
	LDMX	Simulation: PYTHIA-GEAN integration
operation, and analysis	Statistical inference	Detector material evaluation for direct detection

Lund e-science (arc developers) designed and now maintain LDMX's distributed computing system

Leadership: co-spokesperson (T. Åkesson), physics co-coordinator (R. Pöttgen), Computing and

LDNX 2025 and beyond

LESA Beamline expected to open! Planning "miniLDMX" system test & testbeam in 2025

- First exposure to our eventual home beam
- Including as many sub-detector prototypes as possible
- Lessons from CERN testbeam critical \rightarrow
 - G. Gadján & A. Helgstrand, Noise and shower shapes in the LDMX hadronic calorimeter prototype

and in the manual management

HCal prototype from CERN testbeam; now at SLAC

LDMX Collaboration Lund University and 9 US institutions

Reading list:

- Åkesson, Torsten et al. 2022. "Current Status and Future Prospects for the Light Dark Matter eXperiment." arXiv. https://doi.org/10.48550/ arXiv.2203.08192
- Åkesson, Torsten et al. 2023. "Photon-Rejection Power of the Light Dark Matter eXperiment in an 8 GeV Beam." Journal of High Energy Physics 12 (12): 092. https://doi.org/10.1007/JHEP12(2023)092.
- Bryngemark, Lene Kristian et al. 2021. "Building a Distributed Computing System for LDMX: Challenges of Creating and Operating a Lightweight e-Infrastructure for Small-to-Medium Size Accelerator Experiments." EPJ Web of Conferences 251:02038. https://doi.org/10.1051/epiconf/ 202125102038

Beamline considerations

Goal: Individually measure energy & momentum for up to 1016 e- scattered off thin tungsten target

- Motivation: Generate high statistics! 1014-1016 electrons on target within few years
- Requirements ightarrow
 - Beam energy: 4-16 GeV range
 - >16 GeV: Churn out neutrinos (= irreducible background)
 - Low-current (~pA), high-bunch repetition (~40 MHz) e beam
 - 108 electrons/second on target
 - Resolve individual particles \bullet
 - Low number of electrons per bunch
 - Large beam spot

H. Herde (Lund)

A zero-background experiment No interaction

Relative Rate	Incoming	Outgoing
T 10 ⁰	e^-	$\rightarrow e^{-}$

A CLARENCE CONTRACTOR H. Herde (Lund)

- 90% of electrons on target pass right through without interaction
 - Target's thickness ~1X₀
- Eliminate with trigger requirements
 - Electron multiplicity
 - ECal energy

A zero-background experiment **SM Bremsstrahlung**

ECal signature

A zero-background experiment Trident

Tracker & ECal signatures

A zero-background experiment Hadron production in the ECal volume

ECal & HCal signatures

A zero-background experiment Photon conversions to muon pairs

H. Herde (Lund)

LI OF

ECal & HCal signatures

A zero-background experiment **Neutral hadron production**

Various ECal and/or HCal signatures possible (one example here)

A zero-background experiment **Kaon production**

Various ECal and/or HCal signatures possible (one example here)

A zero-background experiment Charged-current producing v & irreducible "invisible" background

H. Herde (Lund)

COLUMNIA COL

Extra tracks

Fortunately, too rare for LDMX to observe

