BESII

1

OLLE ENGKVISTS
STIFTELSE

Lundström-Åmans Foundation

CP symmetry tests of baryon weak decays with LHCb and BESIII

Patrik Adlarson

Department of Physics and Astronomy

Oct 21, 2024

On behalf of the LHCb and BESIII collaborations

UNIVERSITET

- Introduction
- The Experiments
- Strange and Charm CP tests
- Summary and Outlook

Matter - Antimatter Asymmetry and Baryogenesis

No quantitative understanding of what happened to the missing anti-symmetry

The dynamical mechanism, *baryogenesis,* not understood

Sakharov's three criteria *

1) Baryon number violation

2) Charge, *C*, and combined with Parity, *P*, violating processes

3) Departure from thermal equilibrium

CP violation is subtle effect requiring precision studies of many particle physics processes using complementary methods

**A. D. Sakharov, J. Exp. Theor. Phys. Lett. 5, 24*

Spinning baryons

CPV only confirmed in meson systems. No CP violation detected for *baryons* Additional degree of freedom for baryons compared to mesons : spin

Studying baryons provides a complementary path to understanding CP symmetry spare slide for example

Schematic of strange – anti-strange baryon pair at BESIII

Asymmetry parameters and Polarization

Polarization of hyperons experimentally accessible in weak parity violating decays

They are *self analysing*: daughter particles are emitted according to polarization of mother hyperon

Example: Angular distribution of $\Lambda \rightarrow p \pi^-$

Asymmetry parameters and Polarization

weak CP-odd phases

$$
S = |S| exp(\xi_S) exp(i\delta_S)
$$

$$
P = |P| exp(\xi_P) exp(i\delta_P)
$$

strong baryon pion phase shift at cm energy of *Y* mass

ξ weak CP-odd phase for $ΔI = 1/2$

strong phases

Asymmetry parameters give relationship of *S* (parity violating) and *P* (parity conserving) amplitudes

$$
\alpha = \frac{2 \text{Re}(S*P)}{|S|^2 + |P|^2} \qquad \beta = \frac{2 \text{Im}(S*P)}{|S|^2 + |P|^2} = \sqrt{1 - \alpha^2} \sin \phi
$$

* Phys. Rev Lett 55 162 (1985)

 $E^- \to A \pi^-$, $\Lambda \to p \pi^-$

strong contribution $\phi_{\overline{s}} \approx 0$ weak phase diff - potentially CPV

 $\it \Delta\phi_{CP}$ more sensitive to CP-violating effects cf $A_{CP}^{\Xi^-\star^-}$

BEPC II and BESIII

Aerial view of BEPC II and BESIII

- e⁺e⁻ collider in CMS range 2.0 4.95 GeV
- Data taking since 2009, peak luminosity 10^{33} cm⁻²s⁻¹

- Multipurpose detector, near 4π coverage
- Symmetric particle anti-particle conditions, entangled state
- Low hadronic background
- **UPPSALA** • World's largest charmonia data samples UNIVERSITET 10B J/ψ, 3B ψ(2S)

LHCb detector setup

BESIII results

 $E^{-}E^{+} \rightarrow \Lambda(p\pi^{-})\pi^{-}\overline{\Lambda}(\overline{p}\pi^{+})\pi^{+}$

Table 1 | Summary of results

The $J/\psi \rightarrow \Xi^{-} \overline{\Xi}^{+}$ angular distribution parameter a_{ψ} , the hadronic form factor phase $\Delta \Phi$, the decay parameters for $\bar{z} \to \Delta \pi^-$ ($\alpha_{\bar{z}}, \phi_{\bar{z}}$), $\bar{\bar{z}}^+ \to \bar{\Delta} \pi^+$ ($\bar{\alpha}_{\bar{z}}, \bar{\phi}_{\bar{z}}$) $\Delta \to p\pi^-$ (α_{Δ}) and $\bar{\Delta} \to \bar{p}\pi^+$ ($\bar{\alpha}_{\Delta}$); the CP asymmetries $A_{\text{CP}}^{\bar{z}}$, $\Delta \phi_{\text{CP}}^{\bar{z}}$ and A_{CP}^{\wedge} , and the average $\langle \phi_z \rangle$. The first and second uncertainties are statistical and systematic, respectively.

First extraction of weak phase diff for *any* weakly decaying baryon

 $(\xi_p - \xi_s) = (1.2 \pm 3.4 \pm 0.8) \times 10^{-2}$ rad

Consistent with SM expectation $(\xi_n - \xi_s)_{SM} = (1.8 \pm 1.5) \times 10^{-4}$ rad

New method for direct weak phase extraction!

Two CP-tests in single measurement

* PRD 93, 072003 (2018) ** PDG 2020 *** Nat. Ph. 15, 631 (2019) **** PRL 93, 011802 (2004)

$E^0 \overline{E}^0 \rightarrow \Lambda (1)$

- BESIII $\Lambda \bar{\Lambda} \rightarrow (\rho \pi^{+})$

- with 3.3x10⁵ events (previous determination 330 events) [PRD108(2023)L031106]
- Weak phase difference $\Xi^0 \to \Lambda \pi^0$
- Also results from $\Sigma^+ \to p \pi^0$ (see plot)
- Uncertainties improved by future BESIII measurements and next generation *e+e-* colliders , STCF

0.06

LHCb results

- "Direct detection" of
- Most analyses utilize
- Poor spatial resolution
- New algorithm impl
- From IP possible to
- Increases yields of p 70% of E from charm decay

EPJC 84 (2024) 761

Prospect for st

- \circ LHCb has collected large Σ^- samples
- o Best sensitivity to CP is obtained from ϕ (and $\overline{\phi}$) but requires polarized E^- .
- \circ Charm baryons weak decays polarize Σ^- and improves sensitivity
- o A combination of large Run 3 yields and maximal use of LHCb detector can further set limits (or discover) CPV in strange baryon decays

$$
\mathbf{P}_{\Lambda} \cdot \hat{\mathbf{z}} = \frac{\alpha_{\Xi} + \mathbf{P}_{\Xi} \cdot \hat{\mathbf{z}}}{1 + \alpha_{\Xi} \mathbf{P}_{\Xi} \cdot \hat{\mathbf{z}}},
$$

$$
\mathbf{P}_{\Lambda} \times \hat{\mathbf{z}} = \mathbf{P}_{\Xi} \sqrt{1 - \alpha_{\Xi}^2} \frac{\sin \phi_{\Xi} \hat{\mathbf{x}} + \cos \phi_{\Xi} \hat{\mathbf{y}}}{1 + \alpha_{\Xi} \mathbf{P}_{\Xi} \cdot \hat{\mathbf{z}}}
$$

LHCb discovered charm CPV in 2019

 $\Delta a_{CP} \equiv a_{CP}^{dir}(D^0 \rightarrow K^+K^-)$ $a_{CP}^{dir}(D^0 \rightarrow \pi^+\pi^ = (-15.4 \pm 2.9) \times 10^{-4}$

PRL 108 (2012) 111602

- The Standard Model contribution tiny~10-4
- A good place to search for BSM physics
- Most promising Cabibbo suppressed channels: interference between tree and penguin amplitudes
- Charm baryons complementary to Dmeson studies

C_k

Baryon charm cousin decay, Λ_c^+ consistent with CP symmetry

 $\varDelta A_{CP}^{wgt} = A_{CP}(\rho K^-K^+) - A_{CP}^{wgt}(\rho \pi^- \pi^+) \approx A_{raw}(\rho K^-K^+) - A_{raw}^{wgt}(\rho \pi^-)$

Model independent CP tests $\Xi_c^+ \to p K^- \pi^+$

Eur Phys J C80 (2020) 986

- $\Xi_c^+ \to p K^- \pi^+$ is CS. Λ_c^+ control mode (CF)
- Two model independent CP tests
- Consistent with CP conservation
- One region show slight asymmetry R5 : Λ resonances
- To be continued with Run 2 data

200 k events

UNIVERSITET

LHCb model dependent $\Lambda_c^+ \to p K^- \pi^+$

- Charmed three body decays have rich resonant structure
- $\Lambda_c^+ \to p K^- \pi^+$ has many states which interfer with each other
- Even more information available from Λ_c^+ which comes from a beauty mother $\Lambda_b^0 \rightarrow \Lambda_c^+ l^- \bar{\nu}$
- Amplitude analysis is a pre-requisite for CP test
- Roman Sultanov M. Sc. Thesis (UU) explores this topic further

Phys. Rev. D108 (2023) 012023

Thank you for your attention!

• Many exciting results are expected from LHCb in the future

• BESIII and LHCb are both capable of performing CP precision test

• First measurement of weak phase difference for any baryon decay

• LHCb is ramping up its integrated luminosity in Run 3

BESIII

Summary & Outlook

*** arXiv: 2203.03035

In strange sector most precise probe is $\Delta S=1$ direct CPV (ε') relative to indirect CPV (ε) in $K_{S,L}\to\pi\pi$ decays

CPV mechanism in SM requires penguin diagrams involving all three quark families

 $\epsilon'/\epsilon)_{EXP} = (16.6 \pm 2.3) \times 10^{-4}$ *

$$
(\varepsilon'/\varepsilon)_{SM} = (17.4 \pm 6.1) \times 10^{-4} + (\varepsilon'/\varepsilon)_{BSM} = (-4 - +10) \times 10^{-4} \cdot \text{*}
$$

SM calculation involves partial cancellation of QCD and EW penguins which posed challenge until recently

$Strangeness $\Delta S = 1$ **SM** + **BSM**$

$$
A_{CP} = \frac{\alpha + \bar{\alpha}}{\alpha - \bar{\alpha}} = -\sin \phi \tan(\xi_P - \xi_S) \frac{\sqrt{1 - \alpha^2}}{\alpha}
$$

$$
\Phi_{CP} = \frac{\phi + \bar{\phi}}{2} = \cos \phi \tan(\xi_P - \xi_S) \frac{\alpha}{\sqrt{1 - \alpha^2}}
$$

 $-3 \times 10^{-5} \le A_{\Lambda \text{SM}} \le 4 \times 10^{-5}$ $0.5 \times 10^{-5} \leq A_{\text{S}SM} \leq 6 \times 10^{-5}$

$$
\mathsf{BSM} \quad \frac{|A_{\Lambda} + A_{\Xi}| \leq 11 \cdot 10^{-4}}{\text{Decay} \quad |\xi_P - \xi_S| \xrightarrow{\star \star \star} \Delta \to p\pi^-} \leq 5.3 \cdot 10^{-3}}
$$
\n
$$
\frac{\Xi^- \to \Lambda \pi^-}{\text{Set} \times \pi^-} \leq 3.7 \cdot 10^{-3}
$$

J.NIVERSITET

** Phys. Rev. D 67, 056001 (2003) ** Phys. Rev. D 69, 076008 (2004)* *** PRD105 (2022) 116022

LHCb Upgrade II

Theseus's Paradox again! applied to particle physics experiment – LHCb Upgrade II

New tracking detectors

VELO strip \rightarrow pixels; 5 \rightarrow 3.5 mm to beam

Software based triggers

Increase of instantaneous luminosity by factor 50 cf Run 1 and 2

End of Run 4 goal 50fb-1 2010-2018 (Run1: 3fb-1 + Run2: 6fb-1)

LHCb Upgr

Precisions with LHCb data and LQCD in

Fig. 2 | An example $J/\psi \rightarrow (\Lambda \rightarrow p\pi^{-})(\overline{\Lambda} \rightarrow \overline{p}\pi^{+})$ event in the BESIII detector. Cross-section of the detector in the plane perpendicular to the colliding electron-positron beams and a schematic representation of the information collected for the event. The mean decay length of the neutral $\Lambda(\overline{\Lambda})$ is 5 cm. The curved tracks of the charged particles from the subsequent $\Lambda(\overline{\Lambda})$ decays are registered in the drift chamber, indicated by the brown region of the display. The momenta of (anti-)baryons are greater than 750 MeV c^{-1} and pions are less than 300 MeV c^{-1} .

BESIII, Nature Physics 15 (2019) 631

Charged track coverage |cosθ| < 0.93 Mom. res of charged tracks 0.5% at 1 GeV/c

Neutrals $|cos\theta|$ < 0.8 and 0.86 < $|cos\theta|$ < 0.92 Energy resolution 2.5% (5%) at 1 GeV for barrell (end cap)

ToF can be used together with dE/dx MDC for PID

But for fully charged modes e.g. Λ and Ξ momentum requirements enough to separate protons from pions

UPPSALA

UNIVERSITET

Non-leptonic two body decays

From CERN Courier cover July-August 2019

Full baryon octet kinematically accessible at J/ψ resonance

28

BEPC II and BESIII

- Multipurpose detector, excellent resolution, near 4π coverage
- Symmetric particle anti-particle conditions, produced in entangled state
- Low hadronic background
- World's largest charmonia data samples

$J/\psi \rightarrow \Lambda \overline{\Lambda} \rightarrow p \pi^{-} \overline{p} \pi^{+}$

$[PRL129(2022)131801]$ 3.23M \bar{A}

 $J/\psi \rightarrow \Lambda \overline{\Lambda} \rightarrow p \pi^{-} \overline{p} \pi^{+}$

Based on 3.23M $\overline{\Lambda} \Lambda$

 $\langle \alpha(A \rightarrow p\pi^{-}) \rangle_{\Lambda} = 0.754(1)(2)$ $\langle \alpha(A \rightarrow p\pi^{-}) \rangle_{\mathbb{E}} = 0.760(6)(3)$

The formalism polarisation, entanglement and sequential decays * **

$$
\mathcal{W}(\boldsymbol{\xi};\boldsymbol{\omega}) = \sum_{\mu,\nu=0}^{3} \underbrace{C_{\mu\nu}}_{\mu'\nu'=0} \sum_{a}^{3} a_{\mu\mu'}^{\Xi} a_{\nu\nu'}^{\Sigma} a_{\mu'0}^{\Lambda} a_{\nu'0}^{\Lambda}
$$

- Nine-dimensional phase space given by nine helicity angles
- Eight free parameters determined by maximum log likelihood method:

 α_{ψ} , $\Delta\Phi$, $\alpha_{\bar{z}}$, $\overline{\alpha}_{\bar{z}}$, $\phi_{\bar{z}}$, $\overline{\phi}_{\bar{z}}$, α_{Λ} , $\overline{\alpha}_{\Lambda}$ \uparrow \uparrow \uparrow \uparrow **not measured before**

$E^{-}\overline{E}^{+} \to \Lambda(p\pi^{-})\pi^{-}\overline{\Lambda}(\overline{p}\pi^{+})\pi^{+}$

Table 1 | Summary of results

The $J/\psi \rightarrow \Xi^{-} \Xi^{+}$ angular distribution parameter a_{ψ} , the hadronic form factor phase $\Delta \Phi$, the decay parameters for $\bar{z} \to \Delta \pi^-$ ($\alpha_{\bar{z}}, \phi_{\bar{z}}$), $\bar{\bar{z}}^+ \to \bar{\Delta} \pi^+$ ($\bar{\alpha}_{\bar{z}}, \bar{\phi}_{\bar{z}}$) $\Delta \to p\pi^-$ (α_{Δ}) and $\bar{\Delta} \to \bar{p}\pi^+$ ($\bar{\alpha}_{\Delta}$); the CP asymmetries $A_{\text{CP}}^{\bar{z}}$, $\Delta \phi_{\text{CP}}^{\bar{z}}$ and A_{CP}^{\wedge} , and the average $\langle \phi_z \rangle$. The first and second uncertainties are statistical and systematic, respectively.

First measurement of polarization

First direct determination of all $E^{-}E^{+}$ decay parameters

Previous experiments determined product *α α*

Independent measurement of Λ decay parameters. Excellent agreement with previous BESIII results. Similar precision despite 6x smaller data sample

> * PRD 93, 072003 (2018) ** PDG 2020 *** Nat. Ph. 15, 631 (2019) **** PRL 93, 011802 (2004)

 $E^{-}E^{+} \rightarrow \Lambda(p\pi^{-})\pi^{-}\overline{\Lambda}(\overline{p}\pi^{+})\pi^{+}$

Table 1 | Summary of results

The J/ $\psi \rightarrow \Xi^{-} \Xi^{+}$ angular distribution parameter a_{ψ} , the hadronic form factor phase $\Delta \Phi$, the decay parameters for $\Xi \to \Lambda \pi^-(\alpha_{\Xi} \phi_{\Xi})$, $\overline{\Xi}^+ \to \overline{\Lambda} \pi^+(\bar{\alpha}_{\Xi} \phi_{\Xi}) \Lambda \to p\pi^-(\alpha_{\Lambda})$ and $\overline{\Lambda} \to \overline{p} \pi^+(\bar{\alpha}_{\Lambda})$; the CP asymmetries $A_{CP}^{\bar{z}}$, $\Delta \phi_{CP}^{\bar{z}}$ and A_{CP}^{Λ} , and the average $\langle \phi_{\bar{z}} \rangle$. The first and second uncertainties are statistical and systematic, respectively.

We obtain the same precision for as HyperCP with *three orders of magnitude* smaller data sample!

 $\phi_{\text{E,HyperCP}} = -0.042 \pm 0.011 \pm 0.011$ $\langle \phi_{\overline{z}} \rangle = 0.016 \pm 0.014 \pm 0.007$

Strong phase measurement compatible with SM (1.9±4.9)x10-2 but in tension with HyperCP 2.6σ PRD 67 056001 (2004)

> * PRD 93, 072003 (2018) ** PDG 2020 *** Nat. Ph. 15, 631 (2019) **** PRL 93, 011802 (2004)

Nature 606 64-69 (2022)

HyperCP

*PRL 93, 262001 (2004) ** PRD 67, 056001 (2003) *** NPB, Proc Suppl 187, 208 (2009)

 $862M \text{ E } 8230M \overline{\text{E}}$ $A_{CP \Sigma\Lambda} = \frac{\alpha_{\Sigma}\alpha_{\Lambda} + \overline{\alpha}_{\Sigma}\overline{\alpha}_{\Lambda}}{\alpha_{\Sigma}\alpha_{\Lambda} - \overline{\alpha}_{\Sigma}\overline{\alpha}_{\Lambda}} = (-6.0 \pm 2.1 \pm 2.0) \times 10^{-4}$ *** **UNIVERSITET**

UPPSALA

STCF: sequential weak decay

Using polarized electron beam can greatly enhance sensitivity!

$$
\mathcal{I}_0(\Phi_{\mathrm{CP}}) = \frac{2N}{27} \left(1 - \alpha_{\mathrm{E}}^2\right) \alpha_{\Lambda}^2 \left[\left(3 + \alpha_{\mathrm{E}}^2 \alpha_{\Lambda}^2\right) \langle \mathbb{P}_{\mathrm{E}}^2 \rangle + \frac{2}{3} \left(\alpha_{\mathrm{E}}^2 \left(3 - 2\alpha_{\Lambda}^2\right) + 3\alpha_{\Lambda}^2\right) \langle \mathbb{S}_{\mathrm{E}}^2 \rangle \right]
$$
\n
$$
\sigma(\Phi_{\mathrm{CP}}) = 1/\sqrt{\mathcal{I}(\Phi_{\mathrm{CP}})}
$$
\n
$$
\phi_{\mathrm{CP}}
$$
\n
$$
\phi_{\mathrm{CPI}}
$$
\n
$$
\phi_{\
$$

 P_e