Searches for a Charged Higgs Boson in ATLAS and Development of Novel Technology for Future Particle Detector Systems

Daniel Pelikan

Uppsala University

20 March 2015

PhD defence presentation

Daniel Pelikan

- Theoretical Background
- The ATLAS Experiment
- Research described in this thesis
 - Search for charged Higgs bosons
 - Development of novel detector technology

- Describes
 fundamental
 constituents
- Interactions:
 - Electromagnetic force
 - Strong force
 - Weak force

- The Higgs field couples to the particles of the Standard Model (SM) and gives them mass.
- The Higgs field gives rise to a spin-0 Higgs boson.
 - This last missing piece was discovered in 2012 by ATLAS and CMS.

Why is the SM not enough?

- Examples of phenomena not explained by SM:
 - Dark matter and Dark energy
 - Matter anti-matter asymmetry
 - Grand Unification Theory
- Supersymmetry can help to solve some of these problems
 - Unification of the forces at high energy

- * At least double the particle spectrum
 - Dark matter candidate
- * At least two scalar Higgs doublets are needed
 - This gives 5 Higgs bosons: H+, H-, H0, h0, A0

Daniel Pelikan

Uppsala University

The charged Higgs boson

Finding a charged Higgs boson would be a clear indication for BSM physics.

Charged Higgs boson production

- Charged Higgs bosons lighter than the top quark are dominantly produced via gluon-gluon fusion initiated top-pair production.
 - The top quark decays into a charged Higgs boson
 - The charged Higgs boson decays into a tau lepton and a neutrino
- * Charged Higgs boson heavier than the top quark mass:
 - Direct production via gluon-b fusion and gluon-gluon fusion

The ATLAS experiment

- Large collaboration (>3000 scientists)
- >15 years of research and development
- Designed to search for the Higgs bosons, BSM physics …
- All sub-detectors are used for physics analysis in this thesis.
- New technology is developed with application to improve the tracking detector system.

Daniel Pelikan Uppsala University

Increasing luminosity

- Increasing number of interactions per crossing.
- Triggers had isolation requirements in 2012.

Papers included in my thesis

Papers on charged Higgs boson physics:

- * Search for charged Higgs bosons decaying via $H^+ \rightarrow \tau v$ in top quark pair events using pp collision data at $\sqrt{s} = 7$ TeV with the ATLAS detector, JHEP 1206 (2012) 039
- Search for charged Higgs bosons through the violation of lepton universality in ttbar events using pp collision data at $\sqrt{s} = 7$ TeV with the ATLAS experiment, JHEP 03 (2013) 076
- Estimation of non-prompt and fake lepton backgrounds in final states with top quarks produced in proton-proton collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector, ATLAS-CONF-2014-058
- Papers on development of novel technology for future particle detector systems:
 - Wireless data transfer with mm-waves for future tracking detectors, 2014 JINST 9 C11008
 - Radial transfer of tracking data with wireless links, PoS(TIPP2014)095

- Methods for the estimation of non-prompt and fake leptons are presented:
 - Matrix Method
 - Method based on measurement of lepton identification efficiencies with relaxed identification criteria using data.
 - Fitting Method (jet-lepton model, anti-muon model)
 - Construction of templates for non-prompt and fake leptons.
- Full 2012 data set is used @ 8 TeV.
- These methods were used in many ATLAS analysis in top-quark related physics, but never studied in detail as in this paper.
 - *~330 pages of supporting document!

Paper III – Fake Leptons

What are fake leptons?

- Electron:
 - Semileptonic decay of b- and c-quarks
 - Decay in flight of π^{\pm} or K mesons
 - Photon conversion
 - Jets with large electromagnetic energy π_0 , or early showering.
- Muon:
 - Semileptonic decay of b- and c-quarks.
 - Charged hadrons decaying in the tracking volume or hadronic showers.
 - Punch-through particles from high energy hadron showers.
- Why data driven methods?
 - Misidentification probability is small.
 - \rightarrow large amounts of events would need to be simulated
 - Modelling of lepton isolation in simulation is very difficult.
- Fake leptons are also called misidentified leptons.

Paper III – Matrix Method

- The Matrix Method exploits the difference in lepton identification between real, prompt, and fake or non-prompt electrons and muons.
- Number of loose leptons: $N^l = N^l + N^l_c$
- Number of tight leptons:

$$\left. \begin{array}{c} N^{l} = N_{r}^{l} + N_{f}^{l} \\ N^{t} = \varepsilon_{r} N_{r}^{l} + \varepsilon_{f} N_{f}^{l} \end{array} \right\} \left(\begin{array}{c} N^{l} \\ N^{t} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ \varepsilon_{r} & \varepsilon_{f} \end{pmatrix} \begin{pmatrix} N_{r}^{l} \\ N_{f}^{l} \end{pmatrix}$$

- ε_r: fraction of real leptons in the loose selection (relaxed isolation requirements) passing also the tight selection.
- \mathbf{z}_{f} : fraction of fake leptons in the loose selection passing also the tight selection.
- Tight selection is a subset of the loose selection.
- The number of fake leptons in the tight selection an be determined by:

$$N_f^t = \frac{\varepsilon_f}{\varepsilon_r - \varepsilon_f} (\varepsilon_r N^l - N^t)$$

The hard part is to determine the efficiencies ε_r and ε_f as function of different kinematic variables.

Paper III – Matrix Method

- Estimation of the real efficiency ε_r
 - * Use a tag and probe method $Z \rightarrow ee, Z \rightarrow \mu\mu$
- Estimation of the fake efficiency ε_{f}
 - * Electron: CR with $m_T^W < 20 GeV \&\&m_T^W + E_T^{miss} < 60 GeV$
 - * Muon: muon impact parameter $|d_0^{sig}| > 5$
 - $|d_0^{sig}| = d_0 / \sqrt{err(d_0)}$
 - Transverse coordinate of a track at the point of closest approach to the primary vertex.

Efficiencies are parametrized as function of different variables

Paper III – Matrix Method

The fake estimate is monitored throughout the whole cut flow.

Good agreement between simulation + fake estimate and data.

Uppsala University

Compare Matrix vs. Fitting Method

- Matrix Method and Fitting Method are in agreement within systematics.
 - * Sys. MM: 10% 50 %
 - * Sys. FM: 50%

Paper I

- The full 2011 dataset with 4.6 fb⁻¹ @ 7 TeV was analysed.
- Three different analysis channels were analysed in this paper:
 - Lepton + jets channel:
 - Jets from hadronically decaying W boson.
 - Lepton (el, mu) from $H^+ \rightarrow \tau v$ where the τ decays leptonically.
 - * Tau + lepton channel:
 - Lepton (el, mu) from leptonically decaying W boson.
 - Hadronic tau from $H^+ \rightarrow \tau v$
 - * Tau + jets channel:
 - Jets from hadronically decaying W boson.
 - Hadronic tau from $H^+ \rightarrow \tau v$

- Selection:
 - One trigger matched lepton, veto on second lepton or tau.
 - * >=4 jets, == 2 b-jets, Missing E_{T} .
- Hadronic decaying top side is found by minimising:

$$\chi^{2} = \frac{(m_{jjb} - m_{top})^{2}}{\sigma_{top}^{2}} + \frac{(m_{jj} - m_{W})^{2}}{\sigma_{W}^{2}}$$

Discriminating variable is used to separate background and signal:

$$\cos\theta_l^* = \frac{4 \boldsymbol{p}^{\boldsymbol{b}} \cdot \boldsymbol{p}^{\boldsymbol{l}}}{m_{top}^2 - m_W^2} - 1$$

- Background estimation:
 - Misidentified lepton background estimated from data with the Matrix Method.
 - Other backgrounds are taken from simulation.

Paper I - Lepton + jets channel

- Selection:
 - One trigger matched lepton, veto on second lepton
 - One tau with opposite charge to the lepton
 - *>=2 jets, >= 1 b-jets,
 - * Requirement on Σp_{T}
- Missing E_{τ} is used as discriminating variable
- Estimation of backgrounds:
 - Misidentified lepton background estimated from data with the Matrix Method.
 - * Electrons misidentified as taus: reweighting simulation by data driven scale factors.
 - * Jets misidentified as taus: reweighting simulation by data driven scale factors.
 - * Background with true taus is taken from MC.

Selection:

- * τ + missing E_T trigger
- *>=4 jets, >=1 bjet,
- * == one trigger matched τ , veto events with el and mu
- Missing E_{T} requirement
- Discriminating variable is m_{τ}

$$m_T = \sqrt{p_T^{\tau} E_T^{miss} (1 - \cos \varphi_{\tau, miss})}$$

- Estimation of backgrounds:
 - Multijet background estimated from data with template method.
 - Electrons misidentified as taus: reweighting simulation by data driven scale factors.
 - Jets misidentified as taus: reweighting simulation by data driven scale factors.
 - Background with true taus, estimated by data driven embedding method.

Paper I - Tau + jets channel

It can be seen that this channel is most sensitive and has the highest discriminating power.

Combined Limits

- Limits on the BR($t \rightarrow bH^+$) in the range 5% 1%.
- Limits on the m_H^{max} scenario.
 - * Benchmark scenario in the MSSM (Minimal SuperSymmetric Model)
- $tan(\beta)$ is the ratio of the vacuum expectation values.

- The full 2011 dataset with 4.6 fb⁻¹ @ 7 TeV was reanalysed in the tau+lepton channel.
- Event yield ratios between $e + \tau_{had}$ and $e + \mu$, as well as $\mu + \tau_{had}$ and $\mu + e$ are compared with simulation.
 - The big advantage is that most systematic uncertainties cancel.

$$R_{l} = \frac{B(t\,\overline{t} \rightarrow b\,\overline{b} + l\,\tau_{had} + N\,\nu)}{B(t\,\overline{t} \rightarrow b\,\overline{b} + ll\,' + N\,\nu)}$$

Background estimation

- Misidentified electrons and muons: data driven Matrix Method
- * Backgrounds due to misidentified au jets:
 - OS-SS to remove heavy-flavour quark and gluon fakes.
 - Re-weight simulation by scale factors to account for measured tau track multiplicities.
 - Re-weight simulation to account for measured (OS-SS) light-quark
 - jet $\rightarrow \tau_{had}$ misidentification probabilities.

Paper II – Ratio Method

0.03

0.02 0.01

0^上_90

100

110

120

130

140

Improved limits compared to the previous paper 3.4 % - 0.8% in the mass range 90-160 GeV.

150

160

Change of Topic

Charged Higgs Physics

What do we need, to continue doing physics with higher energies and higher luminosity?

Bringing physics informations from A to B

Daniel Pelikan

Uppsala University

5mm

27

HL-LHC will deliver 250 fb⁻¹ per year.

- * Compared to a total 300 fb⁻¹ until 2022 with LHC.
- * ~140 number of interactions per bunch crossing (compared to ~30 in 2012) → large particle fluxes.
- Higher granularity is needed.
- * Low p_T thresholds (~20 GeV) are needed for physics analysis.
 - At the same time low trigger rates are required in order to read out the detector.
 - A track trigger could help to solve this problem.
 - A lot of communication inside the detector is needed.
 - \rightarrow Increase of material
- Future detector systems would like to read out the whole detector during high interaction rates, with only little or no pre-selection.

Wireless technology can help

The current readout is not optimal for communication inside the detector.

Axial detector readout resulting in long paths, long latency etc.

- How can wireless technology help to solve the problem?
 - Radial data transfer gets possible.
 - No cables and connectors needed for data transfer.
 - Up to 7 GHz unlicensed frequency spectrum
 @ 60 GHz.
 - Small and low mass components (mm-waves).
 - Low power and cost.

Physics events are triggered in Rol that are conical regions radial from the interaction point in Φ and η .

Scenarios

Inter layer communication Radial data readout

Paper IV - Antenna design

- We have started to design and produce patch antennas.
 - * Single and antenna arrays.
 - Can be produced on PCB material.
 - Etching and milling.
 - Rogers, DuPont PCB material
 - Very small structure sizes.

1.8 mm

S-parameters:

- Describe the input-output relationship between ports in an electrical system.
- Ex.:, 2 ports (Port 1 and Port 2), then S12 represents the power transferred from Port 2 to Port 1.
- Having a transmitter with an antenna connected:
 - S11 is the reflected power Port 1 is trying to deliver to antenna 1.
 - OdB all power is reflected
 - 30dB and below almost no power is reflected
 - \rightarrow good matching
- Frequency depending variable.

Daniel Pelikan

Paper IV - Results

Compare simulation with a manufactured antenna.

- * This gives feedback how good simulation matches reality.
- * Etched antennas were used (PCB etching process).
 - 4 Patch antenna array: very good agreement with simulation.
 - I Patch antenna: a shift of ~500MHz.

Uppsala University

• This is good result and shows that antenna production is feasible.

Paper IV - fabrication precision

- The effect of fabrication tolerances were studied:
 - Mill too deep through the cooper (remove substrate)
 - \rightarrow frequency shift to higher f
 - Antenna outer edges 5 μm too large
 - \rightarrow frequency shift to lower f
 - Antenna outer edges 5 μm too small
 - \rightarrow frequency shift to high f
- I → Tolerances as small as 5µm can cause shift of ~1GHz!

Paper V - Passive data transfer

- The amount of electronics could be reduced significantly if one could radiate through detector layers.
 - * No active hardware would be needed as a repeater.
 - The links are spread out uniformly around the detector and do not have to be routed to the extremely dense gap.
- Simple approach:
 - One receiver antenna on one side and a transmitter antenna on the other side.
 - * Antennas are connected by a micro strip, no active electronics.

Paper V – Through Layer

- Aluminium mock-up with small gap to bring though the antenna.
 - Gap is closed by metal tape.
- We are coming trough two layers with just the passive antennas.

Paper V - Power loss in the layers

- Frequency dependence of the antenna can be observed.
- 16 Patch 16 Patch antenna were used.

Power estimate:

- Horn to Horn 12 cm distance:
 - ~ -40 dBm @ 57.2GHz
- * Single antenna : ~ -60dBm
- ***** Two antennas : ~ -80dBm
- Background
- We have ~20dB insertion loss per detector layer.
- The test was performed with 0.001 W output power.
 - +10 dB gain on RX side

Paper IV - fabrication precision

- The effect of fabrication tolerances were studied:
 - Mill too deep through the cooper (remove substrate)
 - \rightarrow frequency shift to higher f
 - Antenna outer edges 5 μm too large
 - \rightarrow frequency shift to lower f
 - Antenna outer edges 5 μm too small
 - \rightarrow frequency shift to high f
- I → Tolerances as small as 5µm can cause shift of ~1GHz!

Charged Higgs boson:

- This thesis presents all charged Higgs boson searches with leptons involved, published by ATLAS (Paper I – II).
- A detailed evaluation of the Matrix Method with the full 2012 data set was presented (Paper III).
 - Important for the estimation of fake lepton backgrounds in charged Higgs boson searches.
- Novel technology for future detectors:
 - * The design and different production method of singleand array patch antennas were studied and demonstrated (Paper IV).
 - A passive repeater structure was fabricated and demonstrated to work (Paper V).

The Fitting Method

- Based on the construction of templates of nonprompt and fake leptons
 - Jet-lepton model
 - Model build from simulated di-jet events
 - Require one jet to be electron like
 - Anti-muon model
 - Data driven template, enriched in non-prompt muons
 - Inverted muon requirements
 - Same cuts are applied on these models as in base selection
 - The template is fitted to the observed data in order to get the normalization
 - Missing E_{τ} and m_{τ} as variables

Antenna design - simulation

Single patch

Uppsala University

S-parameters:

- Describe the input-output relationship between ports in an electrical system.
- Ex.:, 2 ports (Port 1 and Port 2), then S12 represents the power transferred from Port 2 to Port 1.
- Having a transmitter with an antenna connected:
 - S11 is the reflected power Port 1 is trying to deliver to antenna 1.
 - OdB all power is reflected
 - 30dB and below almost no power is reflected
 - \rightarrow good matching
- Frequency depending variable.

Antenna design - simulation

Designs for multi patch antennas.

- 4 Patch design.
- Higher gain and focus.

Passive data transfer through layers

