

DFH Cold Boxes production in Sweden

By Rocío Santiago Kern On behalf of FREIA-UU and RFR Solutions

Content

- Collaboration Agreement & Funding
- Asset distribution between RFR and UU
- Delivery Schedule to CERN
- Project's Perspectives
- Where does FREIA stand now?

Collaboration Agreement

- KE5162, EDMS <u>1981185</u>
- Scope of supply:
 - DFHX x4
 - DFHM x5
- Design made by CERN
- Design drawings provided by CERN
- Special situation:
 - Collaboration among CERN-University-Company
 - All parties manufacture pieces
 - Uppsala University is the bridge between CERN and the company (RFR)

Funding

Y Vetenskapsrådet

- RFR had experience from Prototype (DFHX1) and would benefit from
 - Planning machining requirements: the amount necessary, how to do it and arrangements with subcontractors
 - Learning new process with Helium leak testing
 - Adapting to strict tolerances
- Money invested in the project
 - Vetenskapsrådet (VR): 10 000 000 + 1 700 000 SEK
 - CERN: 900 000 CHF

Asset Distribution between UU and RFR

- UU/FREIA workshop:
 - Smaller-size parts that do not require certified welding
 - Max milling length 1035 mm Radius max 500 mm turning machine
 - Subsupplier for silver-coating

Asset Distribution between UU and RFR

- RFR:
 - All the rest of the parts
 - Subsuppliers:
 - Bellows
 - Epoxy components
 - Machining of big chambers (welding done at RFR)

Delivery Schedule to CERN

	2022		2023											
October	November	December	January	February	March	April	Муу	Jun	July	August	September	October	November	December
x1 DFHX		x1 DFHX		x1 DFHX		x1 DFHX		x1 DFHM		x1 DFHM		x1 DFHM		x2 DFHM
Documentation		Documentation		Documentation		Doci n entotion		Documentation		Documentation		Documentation		Documentation
Excluding components:		Excluding components:												
LHCDFHX0024		LHCDFHX0024	ſ	OKI										
LHCDFHX0042		LHCDFHX0042				Í								
LHCDFHX0049		LHCDFHX0049												
	1				1	1	1	Ī			1		1	1

2023							 2024							
Jun	July	Aug	Sep	Oct	Nov	Dec	Jun		Jul	Aug	Sep	Oct	Nov	
DFHX2			DFHX3			DFHX4 and DFHX5	DFHX4	DFHX5	DFHM1		DFHM2	DFHM3	DFHM4	DFHM5
Documentation			Documentation	D		Documentation	Documentation	Documentation	Documentation		Documentation	Documentation	Documentation	Documentation
Excluding components:			Excluding components:			Excluding components:								
LHCDFHX_0024			LHCDFHX_0024			LHCDFHX_0024								
LHCDFHX_0042			LHCDFHX_0042			LHCDFHX_0042								
LHCDFHX_0049			LHCDFHX_0049			LHCDFHX_0049								

Deliveries

- Delivered in total 554 components
- 13 416 pages of documentation
- From all these, there were only 2 pieces that had to be scrapped
 - LHCDFHX_0041: the rings were not parallel
 - LHCDFHX_0049: one of the edges was machined oval and too thin
- Two He-leaks detected, both on welds on LHCDFHX_0024
- Up to now, DFHX2, DFHX3 and DFHX4 have been blank assembled at CERN and are leak tight

LHCDFHX_0041

LHCDFHX_0049

LHCDFHX_0024

Uppsala

RFR's Project Perspective: Lessons Learned

<u>Good</u>

- Preparation of Documentation
- Implementation of the first prototype experience in series production
- PRR:
 - Possibility to think about the manufacturing process
 - Made a few changes along the project
- Have acquired knowledge for future projects

To be improved

- Planning + start the manufacturing
- Production preparation studies
- Importance of quality control during manufacturing
- The challenges of understanding the leak test results
- Continuous reporting

RFR's Project Perspective: Main Takeaways

- Great cooperation, support and learning opportunities (CERN workshop, UU workshop, FREIA)
- High competence development within vacuum technology and helium leak testing
- Manufacturing for demanding tolerances
- Good reference for marketing and brand-building
- Possibility of working with CERN in future projects

FREIA's Project Perspective

- Valuable insight by examining the project from multiple perspectives: industry and customer (Big Science facility).
- Understanding the intricacies of manufacturing processes and the associated timelines
- Identifying key aspects of the documentation
- Recognizing and addressing potential challenges and complex areas within the project
- Defining non-conformities and how to manage them
- Great cooperation, support and learning opportunities

Where Does FREIA Stand now?

Testing of Supercoducting Cavities for MYRRHA

- MYRRHA: Multi-purpose Hybrid Research Reactor for High-tech Applications, for nuclear waste treatment
- Phase I of the MYRRHA project (MINERVA): design and construction of the first linac section (up to 100 MeV)
- FREIA
 - Will test the double spoke cavities for Minerva (up to 60)
 - Has already tested the first 2 pre-series cavities

Developing superconducting magnets

Funded by: Swedish Agency for Regional and Economic Growth, Region Kronoberg, Uppsala University

Superconducting accelerator magnets

Field measurement system with anti-cryostat and rotating coil is on its way!

SuShi – Superconducting Shield

Designed and built by the Wigner Research Centre for Physics, Hungary, test supported by Euro-Labs

9th December 2024

Other projects

AWAKE: Uppsala develops and delivers RF systems for the two electron injectors for the AWAKE project (run 2).

Courtesy: Kevin Pepitone

3GHz solid-state amplifier

CLIC: Vacuum discharges in acceleration cavities (e.g. X-band technology for CLIC)

ESSnuSB+: Accelerator development for ESS neutrino Super Beam

Thank you for listening

And special thanks to (on behalf of UU):

Yann Leclercq, Paul Cruikshank, Stefanos Spathopoulos, Amalia Ballarino, Oliver Brüning, Benny Björkander, Mats Lavin, Mikael Siversson, Veljko Pribak, Aryan Mohammadi, Mats Orup and many more...

Any Questions/Requests/Comments/Suggestions?