A STRANGER AMONG STRANGERS - RECENT RESULTS ON THE Σ^{0} Hyperon

Karin Schönning, Nuclear Physics

THE Σ^0 HYPERON

- Same quark content as ∧ but different isospin → different production
 - Only octet baryon that **decays** electromagnetically.

EXPLORING THE INNER STRUCTURE

EXPLORING THE INNER STRUCTURE

RECENT FROM THE **ESESTERYPERIMENT**

<u>nature</u> > <u>nature communications</u> > <u>articles</u> > article

Article Open access Published: 11 October 2024

Extracting the femtometer structure of strange baryons using the vacuum polarization effect

The BESIII Collaboration

Nature Communications 15, Article number: 8812 (2024) Cite this article

3142 Accesses | 182 Altmetric | Metrics

EM, isospin-agnostic. Dominant only in $\Sigma^0\overline{\Lambda}$ production.

(c)

Pure EM. Only dominant off-resonance. (d)

- Photon-hadron vertex probes structure.
- Vacuum polarization enhances production near J/Ψ.
 - → precision measurement of transition form factor.
- Analysis and paper: Strong involvement by A. Kupsc and K. Schönning.

FEMTOMETER STRUCTURE OF STRANGE BARYONS

BEST

Results exploiting VP at J/ Ψ mass, $e^+e^+ \rightarrow \overline{\Lambda}\Sigma^0 + c.c.$: • $R = \left|\frac{G_E}{G_E}\right| = 0.86 \pm 0.029 \pm 0.015$ • $\Delta \Phi_{\overline{\Lambda}\Sigma^0} = 1.011 \pm 0.094 \pm 0.010 \ rad$ • $\Delta \Phi_{\overline{\Lambda}\overline{\Sigma}^0} = 2.128 \pm 0.094 \pm 0.010 \ rad$ Nature Comm. 15, 8812 (2024) Compare to best off-resonance measurement of $e^+e^+ \rightarrow \Lambda\bar{\Lambda}$: • $R = \left|\frac{G_E}{G_E}\right| = 0.96 \pm 0.14 \pm 0.02$ • $\Delta\Phi_{\Lambda\bar{\Lambda}} = 0.64 \pm 0.21 \pm 0.10$ Phys. Rev. Lett. 123, 122003 (2019)

MATTER-ANTIMATTER ASYMMETRY

Baryogenesis: Dynamic generation of matter-antimatter asymmetry.

Possible if the three Sakharov criteria are fulfilled.

One is that processes must exist that violates the conservation of charge conjugation (C) and charge conjugation and parity (CP).

CP VIOLATION

- Weak interaction: Well-established through Cabibbo-Kobayashi-Maskawa mechanism.
 - Experimentally verified.
 - Too small to explain matter-antimatter asymmetry.
- Strong interaction: Empirically found to be unnaturally small.
 - Vanishing neutron EDM.
- Hyperon decays provide tests of CP conservation.

STRONG AND WEAK SYMMETRY TESTS IN Σ^0 decays

Idea from S. Nair, E. Perotti and S. Leupold, Phys. Lett. B 788, 535-541 (2019):

- $\Sigma^0 \rightarrow \Lambda \gamma$ decay amplitude:
 - Magnetic parity-conserving moment
 - Electric parity-violating moment (← should be extremely small!)
- Decay distributions of Σ^0 and $\overline{\Sigma}^0$ provide C and CP tests

Covariant formalism for polarized and entangled $\Sigma^0 \overline{\Sigma}^0$ pairs by Fäldt and Schönning, Phys. Rev. D 101, 033002 (2020)

RECENT FROM THE **BESII** EXPERIMENT

Phys	ical R	eview	Letters				n *****	12		
Highlights	Recent	Accepted	Collections	Authors	Referees	Press	About	Editorial Team	n RSS ลิ	
OPEN ACCESS GO MOBILE » ACCESS BY UPPSALA UNIVERSITETSBIBLIOTEK Strong and Weak <i>CP</i> Tests in Sequential Decays of Polarized Σ^0 Hyperons										
<u>M. Ablikim¹, M. N. Achasov^{4,c}, P. Adlarson⁷⁶, O. Afedulidis³, X. C. Ai⁸¹, R. Aliberti³⁵, A. Amoroso^{75a,75c}, Q. An^{72,58,a} (BESIII Collaboration)</u>									Y. Bai ⁵⁷ et al.	
Show me	ore 🗸									
Phys. Rev. Le	ett. 133 , 10	1 <mark>902 – Publis</mark> l	hed 4 Septemb	er, 2024						
DOI: https://	/doi.org/10	.1103/PhysRe	vLett.133.10190	<u>)2</u>						

- Initiated and supervised by K. Schönning, in collaboration with IHEP Beijing, P. Adlarson (UU) and A. Kupsc (UU).
 - Related student project by Annele Heikkilä (2019) and Benjamin Verbeek (2022).

STRONG AND WEAK CP TESTS IN Σ^0 decays

Results:

- Parameter α_{Σ^0} related to parity violation in Σ^0 decay: $0.0017 \pm 0.0021 \pm 0.0018$
 - SM prediction by Nair, Leupold and Perotti $\sim 10^{-12}$
- Parameter A_{CP}^{Σ} related to strong CP violation in Σ^0 decay: $\alpha_{\Sigma^0} + \bar{\alpha}_{\overline{\Sigma}^0} = (0.4 \pm 2.9 \pm 1.3) \cdot 10^{-3}$
 - SM prediction by Nair, Leupold and Perotti $\sim 10^{-14}$
- Parameter A_{CP}^{Λ} related to weak CP violation in subsequent Λ decay: $\frac{\alpha_{\Lambda} + \overline{\alpha}_{\overline{\Lambda}}}{\alpha_{\Lambda} \overline{\alpha}_{\overline{\Lambda}}} = (-3.0 \pm 6.9 \pm 1.5) \cdot 10^{-2}$
 - SM prediction $\sim 10^{-5}$

ONGOING Σ^{O} **STUDIES** AT UU

Probing structure with the Dalitz decay $\Sigma^0 \rightarrow \Lambda e^+ e^-$:

- PANDA@HADES (Jana Rieger and Malin Bohman)
- Belle II (Bianca Scavino)

