Design and Simulations for the Compact Linear Collider Drive-Beam

Raul Costa

2025/06/11

Uppsala

Outline

1 The Compact Linear Collider (CLIC)

- Next Steps in Particle Physics
- The case for CLIC
- CLIC Design

2 Accelerator Physics and Simulations

3 The Drive-Beam Recombination Complex

- The Delay Loop
- The Delay Loop Bypass

The Drive-Beam Decelerators

- Wakefield Interaction
- Updating the Decelerator Lattice
- Decelerator Results

The Compact Linear Collider (CLIC)

What is CLIC and why do we need it?

Raul Costa

CLIC Design and Simulations

2025/06/11

LHC Schedule

proton-proton	electron- $positron$	proton-electron	muon-muon
Highest energy	Clean collisions	Precision	High energy
range	High precision	measurements of	lepton collisions
Broad sensibility	Model-Independent	parton	Clean collisions
to new particles	Higgs	distribution	
	Measurements	functions	
		Lowest cost	
High background	Synchrotron	Limited energy	Muon lifetime
Highest cost	radiation	reach	Significant
	Lower energy	Intermediary	technology
	reach	background	challenges
			(cooling, decay)

proton-proton

electron-positron proton-electron muon-muon

• LHeC

- FCC-hh
- SPPC

- <u>FCC-ee</u>
- CEPC
- <u>CLIC</u>
- <u>ILC</u>
- C^3

• MC

CLIC vs FCC-ee

- The luminosity of the FCC-ee is higher than CLIC for the HZ and $t\bar{t}$ signals but the FCC-ee has near-zero discoverability capacity
- CLIC's first-stage (380GeV) cost is roughly half of the FCC-ee's
- CLIC's second and third stages are potential discovery experiments

CLIC vs ILC

- Super-Conducting
- Powered by klystrons in a parallel tunnel
- Cheaper early stages

- Normal-Conducting
- Powered by a parallel

Drive-Beam

• Cheaper late stages

CLIC Two-Beam Acceleration Scheme

Drive-Beam: Main-Beam 1st-stage 3rd-stage 1.9 GeV 2.4 GeVEnergy $12 \, \mathrm{GHz}$ Frequency 101 A Current 244 ns $\tau_{\rm pulse}$ >90% $P_{\text{extracted}}$ Main-Beam: 1st-stage 3rd-stage $9 \, \text{GeV}$ E_{initial} 176 ns $\tau_{\rm pulse}$ Gradient 72 MV/m = 100 MV/m11 km L_{linac} **Drive-Beam** 380 GeV 3 TeV E_{final}

CLIC First-Stage

CLIC Third-Stage

Accelerator Physics and Simulations

Modeling the Beamline

For a given sequence of elements

we can establish a response matrix

$$R = R_n \cdot \ldots \cdot R_2 \cdot R_1$$

Each element can then be sub-divided

Individual particles are described by $\{x, x', y, y', z, \delta\}$

Modeling the Beam - Bunches

For an ensemble of particles (bunch)

$$\Sigma_x = \begin{bmatrix} \langle x, x \rangle & \langle x, x' \rangle \\ \langle x, x' \rangle & \langle x', x' \rangle \end{bmatrix} = \varepsilon_x \begin{bmatrix} \beta_x & -\alpha_x \\ -\alpha_x & \gamma_x \end{bmatrix}$$

$$\sigma_x = \sqrt{\varepsilon_x \beta_x} \qquad \qquad \sigma_{x'} = \sqrt{\varepsilon_x \gamma_x}$$

Modeling the Beam - Tracking

- PLACET1 uses 3 different bunch models:
 - a 4D single-bunch macro-particle ensemble
 - a 6D single-bunch macro-particle ensemble (for dispersion)
 - a sliced-beam model for accelerating structure and PETS (that can also be used to model a full train)
- PLACET3 can model each bunch individually as a 6D ensemble. It also allows for different-weighted particles (usefull for halo/tail studies)

Chromaticity

Incoherent Synchrotron Radiation

$$\Delta E = \frac{2}{3} \frac{\theta}{\rho} q^2 \left(\frac{E}{m_0 c^2}\right)^4$$

2025/06/11

Coherent Synchrotron Radiation

$$\frac{dE(z,\phi)}{d(ct)} = -\frac{2Nr_cmc^2}{3^{1/3}\rho^{2/3}} \left\{ \frac{\lambda\left(z-z_{\rm s}\right) - \lambda\left(z-4z_{\rm s}\right)}{z_{\rm s}^{1/3}} + \int_{z-z_{\rm s}}^{z} \frac{\lambda'\left(z'\right)}{\left(z-z'\right)^{1/3}} dz' \right\}$$
$$I_{\rm CSR}\left(z,\phi\right) = \frac{3}{2} \left\{ z_{\rm s}^{2/3}\lambda'\left(z-z_{\rm s}\right) + \int_{z-z_{\rm s}}^{z} \left(z-z_{\rm s}\right)^{2/3}\lambda''\left(z'\right) dz' \right\}$$

Coherent Synchrotron Radiation

M. Dohlus, T. Limberg / Nucl. Instr. and Meth. in Phys. Res. A 393 (1997) 494-499

$$\frac{dE(z,\phi)}{d(ct)} = -\frac{2Nr_cmc^2}{3^{1/3}\rho^{2/3}} \left\{ \frac{\lambda\left(z-z_{\rm s}\right) - \lambda\left(z-4z_{\rm s}\right)}{z_{\rm s}^{1/3}} + \int_{z-z_{\rm s}}^{z} \frac{\lambda'\left(z'\right)}{\left(z-z'\right)^{1/3}} dz' \right\}$$
$$I_{\rm CSR}\left(z,\phi\right) = \frac{3}{2} \left\{ z_{\rm s}^{2/3}\lambda'\left(z-z_{\rm s}\right) + \int_{z-z_{\rm s}}^{z} \left(z-z_{\rm s}\right)^{2/3}\lambda''\left(z'\right) dz' \right\}$$

The Drive-Beam Recombination Complex

The Drive-Beam Recombination Complex

The Delay Loop

60 cm 90 cm 60 cm

CLIC Design and Simulations

Bypass

30 cm

Delay Loop - Arc Optimization

Delay Loop - Arc Optimization

8 Sextupoles:

- Capable of correcting chromaticity
- Capable of correcting T_{566} (longitudinal banana-shape)
- Not capable of correcting both

Delay Loop - Arc Optimization

Solution:

• organizing sextupole optimization in 2-arc super-cells

Delay Loop - Impact of Radiation

2025/06/11

Delay Loop - The Need for Bunch-Lengthening

Delay Loop - Impact of Radiation

Delay Loop Bypass

Delay Loop Bypass

The Drive-Beam Decelerators

The Drive-Beam Decelerators

Wakefield Interactions

$$W_L(\tau) = \int_{-\infty}^{\tau} \omega_L(t-\tau) \lambda(t) dt$$

$$W_T(\tau) = \int_{-\infty}^{\tau} \omega_T(t-\tau) \,\mu(t) \,\lambda(t)$$

Long-Range Wakefields

Longitudinal Slippage

- L_{cell} : 2.01 m \rightarrow 2.343 m
- L_{PETS} : 213 mm \rightarrow 206 mm
- P_{initial} : 2.4 GeV \rightarrow 1.9 GeV

Super-Cell	Modules	Fill-Factor	
S ₁	T ₁	75%	
S_2	$T_1 \cdot T_0$	88%	
S_3	$T_1 \cdot T_0 \cdot T_0$	92%	
S_4	$T_2 \cdot T_0 \cdot T_0$	83%	
S_5	$T_2 \cdot T_0 \cdot T_0 \cdot T_0$	88%	

Table 4.2. Periodic super-cells present in the first-stage decelerators.

 Table 4.3. Super-cell construction of each Decelerator Sector.

	S_1	S ₂	S ₃	S ₄	S 5	Length
Sector 1	121	130	0	0	0	892 m
Sector 2	0	17	84	23	0	832 m
Sector 3	0	0	0	42	61	867 m
Sector 4	0	0	0	0	91	853 m

Decelerator Results

Decelerator Results - Reference Momentum

$$P_{\rm ref}(n) = P_0 \left[1 - \eta_{\rm extr} \frac{n}{N_{\rm PETS}} \right]$$

Decelerator Results - Reference Momentum

Solution:

$$P_{\rm ref}(n) = (P_0 - \delta_0) \left[1 - \eta_{\rm extr} \frac{n}{N_{\rm PETS}} \right]$$

Decelerator Results - Bunch lengthening

- Bunch length tolerance: 1%
- Power extraction decrease of 0.03%

Decelerator Results - Bunch Delay

- Drive-Beam to Main-Beam synchronization tolerance: 70 fs
- RF needs to be able to correct it

Decelerator Results - Emittance Dependency

• A similar effect can be observed regarding bunch-length

Conclusion

- The CLIC project is technologically mature
- PLACET3 is the ideal tracking tool for re-circulation topologies like the Drive-Beam (and LHeC, and Muon injectors)
- Non-linear optics of the Delay Loop optimized for transverse and longitudinal chromatic effects
- ISR impacts the Delay Loop longitudinal profile
- $\bullet~{\rm CSR}$ impacts the Delay Loop emittance and δ
- There is a definitive need for bunch-lengthening
- Design of the Delay Loop Bypass
- Design of the 1st-stage Decelerator Sectors
- Bunch-length increase due to longitudinal slippage within tolerance
- Bunch phase delay due to longitudinal slippage not within tolerance, RF correction necessary
- Longitudinal slippage correlation with transverse emittance

- Combiner Rings 1 and 2 optimized and evaluated for radiation impact in a similar fashion to the Delay Loop **Ongoing**
- Re-establishment of start-to-end recombination
- <u>Graduate!</u>