Long Lived

Particles

Sarah ben Abdesselem Advanced Particle Physics VT25

Table of contents

01

Introduction

02 Simplified models

Production modes and decay channels

03

Experimental Coverage

What are LLPs and their signatures

04

Background

sources

accay	criai
05	

Detector

Upgrades

ATLAS upgrades for the HL LHC

Existing LLP research at ATLAS

06

Conclusions

01 Introduction

What are LLPs and their signatures

What are LLPs?

Unstable particles with a sizeable lifetime → travel macroscopic distances before decay

BSM particles could easily reach long lifetimes:

- Approximate symmetries
- Small coupling between LLP and lighter state
- Suppressed phase space of available decays

Unusual signatures ≠ SM processes

4

Unusual signatures

Unusual ionization + abnormal tracks

Energy deposit without associated track

Stopped particles with out of time decay

Displaced vertices in ID or MS

Disappearing and appearing tracks

Knicked tracks

Consequences

..Positive

Promising to discover new physics!

..Negative

Might..

- not pass trigger
- get rejected by algorithms
- get considered as noise or pile up

→ We need dedicated detectors, specific reconstruction algorithms and background models

02 Simplified Models

Production modes and decay channels

Production modes

Direct Pair Production

Produced from a SM final No intermediate particle

Heavy Parent

Produced from decay of

- heavy
- pair produced
- on shell parent

8

Production modes

Higgs (HIG)

Produced through coupling with SM Higgs boson, both pair or single production

9

Vector boson fusion

Production modes

Reasonance (RES)

Decay of on shell Z' boson Pair production

Charged current (CC)

Leptonic decay of W' boson Single production

Decay channels

Di-photon

- Resonant decay (Higgs model) or $\chi\chi$ + invisible (DM model)

Single photon

- γ + invisible (SUSY)

Hadronic

2

3

4

5

- jj (Higgs), jj+invisible (SUSY, DM, neutrino), j+invisible (SUSY)
- Semi-leptonic
 - l+jet, jj (SUSY)

Leptonic

- I+I- (+invisible) (SUSY, neutrino)

Decay Production	$\gamma\gamma(+ ext{inv.})$	$\gamma + { m inv.}$	jj(+inv.)	jjℓ	$\ell^+\ell^-(+ ext{inv.})$
DPP: sneutrino pair	+	SUSY	SUSY	SUSY	SUSY
or neutralino pair					
HP: squark pair, $\tilde{q} \rightarrow jX$	+	SUSY	SUSY	SUSY	SUSY
or gluino pair $\tilde{g} \rightarrow jjX$					
HP: slepton pair, $\tilde{\ell} \to \ell X$	+	SUSY	SUSY	SUSY	SUSY
or chargino pair, $\tilde{\chi} ightarrow WX$					
$HIG: h \to XX$	Higgs, DM*	+	Higgs, DM*	RHν	Higgs, DM*
or $\rightarrow XX + inv.$					$ m RH \nu^*$
HIG: $h \rightarrow X + inv.$	DM*, RHν	+	DM*	RHν	DM*
RES: $Z(Z') \to XX$	Z', DM*	+	Z', DM*	RHν	Z', DM*
or $\rightarrow XX + inv.$					
RES: $Z(Z') \rightarrow X + \text{inv.}$	DM	+	DM	RHν	DM
$CC: W(W') \to \ell X$	+	+	RHv*	RHv	RHv*

Alimena et al., *J. Phys. G* 47, 090501 (2020), https://doi.org/10.1088/1361-6471/ab4574.

Existing LLP research at ATLAS

Searches at ATLAS

Hadronic

In ID or HCAL/MS

Photonic

Semi-leptonic

Hadronic LLP decay

In inner detector

Large Radius Tracking algorithm (LRT)

1. Default track algorithm

2. 2nd run with looser requirements CPU intensive: only on requested events

- $E_t > 250 \text{ GeV}$
- *M_{DV}* > 10 GeV
- High P_t jets
- 5 tracks

In HCAL or MS

- <u>CalRatio</u> in HCAL
 1 trackless jet, low E deposit in ECAL
- <u>MuonRol</u> in MS
 Isolated clusters of L1 Rol in MS

Requires 2 DV:

- 1in ID and 1 in MS
- 2 in MS
- \rightarrow Due to high P_t requirement: no sensitivity to low mass LLP
- \rightarrow Due to 2 DV requirement: only sensitive to DPP and HP production modes

Leptonic and Semi-leptonic decays

Leptonic

Semi-leptonic

<u>Search for displaced leptons</u> Triggered by: e^- , μ , γ without track

- μ > 50 GeV
- e⁻ > 110 GeV
- γ > 130 GeV
- $2 e^-$ in range 38-48 GeV
- $1 e^- 1 \gamma$ in range 38-48 GeV
- DV at 4mm from PV

Identical to leptonic search Except:

- ← 2 opposite sign leptons
- ightarrow 1 lepton and 4 displaced tracks

Photonic decay

Delayed photons

Non-pointing photons

ightarrow Arrive later at ECAL

 \rightarrow Cannot be traced back to PV

Liquid argon ECAL to measure flight time and direction \rightarrow 15mm on Δz , 0.25ns on Δt . Based on theories of decay of neutralino into gravitinos and photons \rightarrow Requires \underline{E}_t !

 \rightarrow Searches don't cover any processes without E_t

Background sources

Real particles produced in detector

Real particles originating from outside the detector

Fake particles

Algorithmically induces fakes

Real particles produced in detector

pp-collisions produce particles

- → Interact with nuclei in detector
- → Displaced vertex that mimic LLP signals
- ightarrow Located in high density regions
- → Effectively rejected by using material maps

Real particles originating from outside the detector: <u>cosmic muons</u>

Cosmic rays enter detector as cosmic ray muons

 \rightarrow rate of 500 Hz at L1, less in LLP searches (high level trigger and offline selection)

In many cases: back to back di-muon signal can be rejected

- = one muon traveling from one side to the other,
 reconstructed as two back to back muon tracks
 <u>High Pt trigger</u>
- = cosmic muos have rapidly falling Pt spectra

Real particles originating from outside the detector: <u>Beam halo</u>

Particles not centered in the beam (EM effects, scattering)

Travel shorter distances \rightarrow faster signal

= LLP signature!

Filter out:

- Check timing
- Track origin
- High P_t or E

Real particles originating from outside the detector: <u>Cavern radiation</u>

pp-collisions produce neutral, long lived SM particles (n, γ)

- → accumulate in LHC caverns
- \rightarrow wander around and create off timing hits in detector (mostly MS)

= LLP signature!

Hard to simulate

ightarrow Measure detector activity when no collisions are expected

Signals that mimic real particles, but are not Actually from detector noise: usually single concentrated energy deposit → out of time and space!

→ Reject single concentrated energy deposits associated to no tracks

Fake particle signatures

Algorithmically induced fakes

Random merged vertices

2 low mass merged into 1 high mass DV Important in region with high track density

Randomly crossing tracks

2 tracks that cross each other → DV More relevant that RMv Reject: removing 1 track significantly decrease mass of DV

ATLAS and the HL LHC

Detector upgrades

Current experimental searches for LLPs: limited by the abilities of ATLAS, CMS and LHCb

LHC upgrade to the HL LHC \rightarrow detectors upgrade accordingly (deal with high pile-up)

 \rightarrow improve LLP searches significantly

06 Conclusions

And summary

Conclusions

- SM is incomplete \rightarrow we need BSM. Particles mostly assumed to decay promptly
- SM particles have big range of lifetimes... Why not BSM particles?
- Long lifetime \rightarrow unusual signatures \rightarrow we need dedicated analysis
- Theoretical overview of simplified models
- Existing searches, need to be improved (sensitivity to low mass LLP, singly produced)
- Specific background: usually negligible, not in LLP searches
- HL LHC offers good prospects for LLP searches!