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Purpose & Motivation

• Interactions between neutrons and U-235 
can cause fission which release energy

• The modelling of neutron transport is 
important to many aspects of nuclear 
reactor operation

• We want to improve the model of neutron 
transport by including fluctuations and 
feedback effects using methods from 
quantum field theory
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Background

Li, X., Cai, D., Wang, 
X., He, M., Li, Z., 
Zhao, C., & Wang, X. 
(2025). Neutronic 
analysis of PWR fuel-
assembly bowing 
based on 
measurement 
data. Nuclear 
Engineering and 
Design, 443, 114283.

• Experiments have found connections 
between neutron fluctuations and 
spatial correlations of the neutron 
distribution

• This might contribute to the 
asymmetry of power distribution seen 
in large reactors






Neutron transport in reactors
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Neutron transport

• Neutron diffusion equation (approximation of the 
neutron transport equation):

𝜕𝜕
𝜕𝜕𝜕𝜕 𝑁𝑁 𝑥⃗𝑥, 𝑡𝑡 = 𝐷𝐷∇2 + 𝜌𝜌 𝑁𝑁 𝑥⃗𝑥, 𝑡𝑡

where 𝑁𝑁 𝑥⃗𝑥, 𝑡𝑡 is the neutron density (flux) at position 𝑥⃗𝑥 and time 𝑡𝑡. 𝐷𝐷 denotes the 
diffusion coefficient and 𝜌𝜌 the reactivity.

• We want to include fluctuations and feedback effects:
𝜕𝜕
𝜕𝜕𝜕𝜕
𝑁𝑁 𝑥⃗𝑥, 𝑡𝑡 = 𝐷𝐷∇2 + 𝜌𝜌 𝑁𝑁 𝑥⃗𝑥, 𝑡𝑡 + 𝜂𝜂 𝑥⃗𝑥, 𝑡𝑡 + 𝜎𝜎𝑁𝑁2 𝑥⃗𝑥, 𝑡𝑡

• Doppler effect (example of feedback): 
• Higher neutron flux more fission  higher 

temperature  faster vibration of U-238 
broadening of the absorption cross section 
more absorption  lower neutron flux

Suescún-Díaz, D., “Stochastic Neutron Population With Temperature Feedback Effects 
Using The Implicit Runge-Kutta Scheme,” J. Appl. Sci. Eng., vol. 28, no. 8, pp. 1795-
1803, Sept. 2024, doi: http://dx.doi.org/10.6180/jase.202508_28(8).0016.

Qvist, S. A. (2013). Safety and core design of large liquid-metal cooled fast breeder 
reactors. University of California, Berkeley.

http://dx.doi.org/10.6180/jase.202508_28(8).0016


Quantum Field Theory (QFT)
• QFT is a framework that models the behaviour of 

fundamental particles
• The fields in QFT fluctuates

• Tools from QFT can be used to analyse neutron 
fluctuations

Scattering 
amplitude from A 
to B in time T
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Previous work



Research plan

1. Reproduce/verify the previous work
2. Improve the theoretical model

• Make the model of feedback more accurate
• Include delayed neutrons (from nuclear decay) in the same framework
• Make the reactivity space and time dependent, 𝜌𝜌 → 𝜌𝜌 𝑥⃗𝑥, 𝑡𝑡
• Introduce energy dependence/multiple energy groups to the neutron flux

3. Simulate the system numerically
4. Implement the improvements in established reactor physics code(s)
5. Verify the results experimentally



Derivation – Correlation functions

• Stochastic neutron diffusion equation:


• Generating functional:
• Correlation functions: 


(assuming that the noise is independent of 𝑁𝑁) 

𝑁𝑁(𝒙𝒙, 𝑡𝑡) is treated as a scalar field



Derivation – Next step

• Include higher order terms
• �𝑁𝑁 𝑁𝑁2 (reactivity feedback)
• �𝑁𝑁2𝑁𝑁 (noise depends linearly on 𝑁𝑁)



Summary

• We want to improve the understanding of neutron transport in nuclear reactors
• Neutron density fluctuates and is subjected to feedback effects
• A toy model (simplistic neutron diffusion equation) has been investigated by using a field 

theoretic framework
• We want to improve and expand this model, for example by making the reactivity space 

and time dependent 𝜌𝜌 → 𝜌𝜌 𝑥⃗𝑥, 𝑡𝑡
• Investigate, test and verify the model numerically and experimentally
• Aim is to improve reactor efficiency and safety (margins) to increase power output of 

current technology



Backups



Neutron transport
• Neutron diffusion equation (approximation of the neutron 

transport equation):
𝜕𝜕
𝜕𝜕𝜕𝜕
𝑁𝑁 𝑥⃗𝑥, 𝑡𝑡 = 𝐷𝐷∇2 + 𝜌𝜌 𝑁𝑁 𝑥⃗𝑥, 𝑡𝑡

where 𝑁𝑁 𝑥⃗𝑥, 𝑡𝑡 is the neutron flux at position 𝑥⃗𝑥 and time 𝑡𝑡. 𝐷𝐷 denotes the diffusion coefficient 
and 𝜌𝜌 the reactivity.

• We want to include fluctuations and feedback effects:
𝜕𝜕
𝜕𝜕𝜕𝜕
𝑁𝑁 𝑥⃗𝑥, 𝑡𝑡 = 𝐷𝐷∇2 + 𝜌𝜌 𝑁𝑁 𝑥⃗𝑥, 𝑡𝑡 + 𝜂𝜂 𝑥⃗𝑥, 𝑡𝑡 + 𝜎𝜎𝑁𝑁2 𝑥⃗𝑥, 𝑡𝑡

• Doppler effect (example of feedback): 
• Higher neutron flux more fission  higher temperature 

faster vibration of U-238  broadening of the absorption cross 
section more absorption  lower neutron flux

• Heat generation: 𝑞̇𝑞~Σ𝑓𝑓𝑁𝑁
• Heat transfer: 𝑞̇𝑞~Δ𝑇𝑇
• Reactivity feedback: 𝜕𝜕𝜕𝜕~𝜕𝜕𝜕𝜕
• Neutron diffusion: 𝜕𝜕𝑡𝑡𝑁𝑁~𝜌𝜌𝜌𝜌

 𝜕𝜕𝑡𝑡𝑁𝑁~𝑁𝑁2

Suescún-Díaz, D., “Stochastic Neutron Population With Temperature Feedback Effects 
Using The Implicit Runge-Kutta Scheme,” J. Appl. Sci. Eng., vol. 28, no. 8, pp. 1795-
1803, Sept. 2024, doi: http://dx.doi.org/10.6180/jase.202508_28(8).0016.

Qvist, S. A. (2013). Safety and core design of large liquid-metal cooled fast breeder 
reactors. University of California, Berkeley.

http://dx.doi.org/10.6180/jase.202508_28(8).0016
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Thermal hydraulics

• Conduction:

𝑐𝑐𝜌𝜌 𝑇𝑇 𝜌𝜌 𝑇𝑇
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝒓𝒓, 𝑡𝑡 = 𝑞𝑞′′′ 𝒓𝒓, 𝑡𝑡 + 𝛁𝛁 ⋅ [𝑘𝑘 𝑇𝑇 𝛁𝛁T 𝒓𝒓, 𝑡𝑡 ]

• Convection:
𝜕𝜕(𝜌𝜌𝜌𝜌)
𝜕𝜕𝜕𝜕 𝒓𝒓, 𝑡𝑡 + 𝛁𝛁 ⋅ 𝜌𝜌𝜌𝜌𝒗𝒗 𝒓𝒓, 𝑡𝑡

= −𝛁𝛁 ⋅ 𝒒𝒒′′ 𝒓𝒓, 𝑡𝑡 + 𝑞𝑞′′′ 𝒓𝒓, 𝑡𝑡 + 𝛁𝛁 ⋅ 𝜏𝜏 ⋅ 𝒗𝒗 𝒓𝒓, 𝑡𝑡 − 𝛁𝛁 ⋅ 𝑃𝑃𝒗𝒗 𝒓𝒓, 𝑡𝑡 + (𝜌𝜌𝒈𝒈 ⋅ 𝒗𝒗) 𝒓𝒓, 𝑡𝑡
• Conservation of mass:

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝒓𝒓, 𝑡𝑡 + 𝛁𝛁 ⋅ 𝜌𝜌𝒗𝒗 𝒓𝒓, 𝑡𝑡 = 0

• Conservation of momentum:

𝜌𝜌 𝒓𝒓, 𝑡𝑡
𝜕𝜕𝒗𝒗
𝜕𝜕𝜕𝜕

𝒓𝒓, 𝑡𝑡 + 𝒗𝒗 𝒓𝒓, 𝑡𝑡 ⋅ 𝛁𝛁 × 𝒗𝒗 𝒓𝒓, 𝑡𝑡 = 𝛁𝛁 ⋅ 𝜏𝜏 𝒓𝒓, 𝑡𝑡 − 𝛁𝛁P 𝒓𝒓, 𝑡𝑡 + 𝜌𝜌 𝒓𝒓, 𝑡𝑡 𝒈𝒈

17



Derivation – Langevin equation

• Langevin equation:
• The noise 𝜂𝜂 varies faster than 𝑓𝑓

• Expansion of unity:
• Average over noise:
• Assuming a forward discretization scheme and Gaussian noise with 

zero mean and covariance that is 
independent of 𝜕𝜕𝑡𝑡𝑓𝑓
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