

FREI

Accelerator Research at Uppsala University

Roger Ruber Dept. of Physics and Astronomy Uppsala University 14 July 2015 at ODU

Oldest university in Scandinavia (1477)

- Sweden
 - 9.7 million (pop.), 450'000 km², 430 GEur (BNP)
- Uppsala
 - 25'000 students, 9'000 staff, 630 MEur annual budget
 - faculties of theology, law, medicin, pharmacy, arts, social sciences, languages, educational sciences, science and technology
 - university library and hospital
- Science and technology
 - 10'000 students, 1'800 staff
 - historical profiles: Linnaeus, Rudbeck, Celsius,
 Ångström, Siegbahn, Svedberg
 - R&D areas
 - physics, chemistry, biology, earth sciences, engineering, mathematics, IT

1940's: The(odore) Svedberg proposes to build a cyclotron

- Gustaf Werner synchro-cyclotron (1947 2015)
 - nuclear physics & cancer treatment
- CELSIUS ring (1984 2005)
 - nuclear physics
- CTF3/CLIC (since 2005)
- FLASH/XFEL (since 2008)
- ESS (since 2009)
- FREIA laboratory (since 2011)
- Skandion clinic (2015)
 - cancer treatment

14-Jul-2015

Offshoots from Uppsala Accelerator R&D

Scanditronix

- major supplier
 - cyclotrons 1970-80's
 - PETs 1980's
- GE Medical Systems PET and cyclotrons
 - former Scanditronix
- IBA Dosimetry
 - former Scanditronix Wellhöfer

WELLHOFER

Scanditronix Magnets SCANDITRONIX

- ScandiNova
 - high voltage pulse modulators

- Gammadata
 - physics tools education, research, industry

Skandionkliniken

Skandionkliniken

- proton therapy centre

- Gustaf Werner synchro-cyclotron (1947 - 2015†)
 - protons (180 MeV) and heavy ions
 - proton therapy (first patient treated 1957)
 - radio-isotope production
- CELSIUS storage and accelerator ring (1984 - 2006†)
 - protons (1360 MeV) and heavy ions
 - electron cooler (300 keV)
 - gas-jet and pellet target
- Skandion clinic (from August 2015)
 - proton therapy
 - commercial operator

CLIC Compact Linear Collider Study

14-Jul-2015 R. Ruber - Accelerator Research at Uppsala University

- Two-beam Test Stand at CTF3
 - proof-of-principle CLIC two-beam acceleration scheme
 - conditioning and test of PETS and accelerating structures

- RF breakdown studies
 - possible beam kick (in TBTS)
 - ejected electrons and ions (in TBTS & Xbox 12GHz klystron test stand)
 - in-situ SEM DC-spark study

Two-beam Test Stand

probe beam

UUL

R. Ruber - Accelerator Research at Uppsala University

RF Breakdown Studies

14-Jul-2015 R. Ruber - Accelerator Research at Uppsala University

Manipulating bright electron bunches with external laser

- SUFELMA STOCKHOLM-UPPSALA CENTRE FOR ERFE FLECTRON LASER RESEARCH
- Stockholm-Uppsala FEL Centre (www.frielektronlaser.se)
 - started after closure of CELSIUS (UU) and CRYRING (SU)
 - participate in the XFEL planning phase
 - for diagnostic purposes
 - Optical Replica Synthesizer (ORS at FLASH)
 - measure ultra-short bunches in the 10's of fs range
 - too fast for electronics (10 GS/s, 100ps),
 - but can be done with optics (so-called FROG)
 - make an optical copy of the electron bunch and analyze that with laser methods
 - leading to XFEL participation
 - for beam stability
 - Laser Heater (at European XFEL)
 - Swedish in-kind
 - and a FEL in the Stockholm-Uppsala region

- make an optical copy of the electron bunch and analyze that with laser methods.
 - temporal overlap of sub-ps electron bunch und laser pulse
 - rough adjustment on photo diode on OS1 per synchrotron radiation and laser ~ 100 ps
 - fine-tuning on OS2 by observing coherent OTR of modulated electrons

14-Jul-2015 R. Ruber - Accelerator Research at Uppsala University

OTR on OS2-camera while 200 fs laser-pulse passes through electron bunch

- Why...
 - Electrons are born in the photo cathode with a very small momentum spread (~3 keV)
 - makes them susceptible to microbunching instability on their travel through the linear accelerator and bunching chicanes
 - Add Landau damping (decoherence) in a well-controlled way to increase momentum spread
 - induce moderate momentum modulation by passing a laser over the electrons in an undulator
 - and smear out by coupling some of the angular spread into the longitudinal plane
- How...
 - Pass IR laser over beam in undulator \rightarrow modulate dE
 - R52 of 2nd leg of chicane couples 'transverse heat' into the longitudinal plane and smears out the modulation

- use 1030 nm photons, operate between 110 and 160 MeV
- permanent undulator with variable gap: 8+2 periods of I=74 mm
- chicane offset 30 mm:
 - second half has R56=0.003/2 m, R52=0.030 m
- pulse energy up to 50 uJ (2.5 MW, 20ps)
- Beta functions 9 and 12 m, $\sigma \sim 0.2$ mm

Level 7

Level 5

European

- Lund, Sweden, next to MAX-IV
 - to replace aging research reactors
 - 2019 first neutrons
 - 2019 2025 consolidation and operation
 - 2025 2040 operation
- 5 MW pulsed cold neutron source, long pulse
 - 14 Hz rep. rate, 4% duty factor
 - >95% reliability for user time
 - short pulse requires ring, but user demand satisfied by existing facilities (ISIS, SNS, J-PARC)
- High intensity allows studies of
 - complex materials, weak signals, time dependent phenomena
- Cost estimates (2008 prices)
 - 1,5 G€ / 10 years
 - 50% by Sweden, Denmark, Norway

evaporation

proton

neutron

highly excited

nucleus

SPALLATION

The ESS Accelerator

352.21 MHz 704.42 MHz								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
		мевт 🔸 🕅		dium β 🔶 Hi	ghβ 🔶	HEBT & Commence	+ Target	
行 75 keV	分 3.6 Me	٧	分 分 90 MeV 216 MeV	分 561 MeV	分 2000 Me	v		
	Length [m]	No. Cavities	No. Magnets	No. Steerers	β	No. Sections	Power [kW]	
LEBT	2.38		2 Solenoid	2 x 2		1		
RFQ	4.6	1				1	1600	
MEBT	3.83	3	11 Quad	10 x 2		1	15	
DTL	38.9	5	PMQs	15 x 2		5	2200	
LEDP + Spoke	55.9	26	26 Quad	26	0.50	13	330	
Medium Beta	76.7	36	18 Quad	18	0.67	9	870	
High Beta	178.9	84	42 Quad	42	0.86	21	1100	
HEBP	130.4		32 Quad	32	(0.86)	15		
DogLeg	66.2		12 Q + 2D	14				
A2T	46.4		6 Q + 8 Raster					
	604.21	155						
LEBT RFQ MEBT DTL DTL LEDP + Spoke Medium Beta High Beta HEBP DogLeg A2T	2.38 4.6 3.83 38.9 55.9 76.7 178.9 130.4 66.2 46.4 604.21	1 3 5 26 36 84 155	2 Solenoid 11 Quad PMQs 26 Quad 18 Quad 42 Quad 32 Quad 12 Q + 2D 6 Q + 8 Raster	2 x 2 10 x 2 15 x 2 26 18 42 32 14	0.50 0.67 0.86 (0.86)	1 1 5 13 9 21 15	1600 15 2200 330 870 1100	

14-Jul-2015 R. Ruber - Accelerator Research at Uppsala University

1) Contribution to the technical design & construction effort

- design concept spoke accelerating cavity power source
- design concept radio-frequency (RF) power distribution
- survey test stand infrastructure and requirements
- study of upgrade scenarios RF systems for ESS power upgrade

2) Development spoke cavity high power RF amplifier

- soak test with water cooled load, then accelerating cavity, incl. controls
- collaboration with industry to develop vacuum tube and solid-state based prototypes

3) Spoke cavity system test

- dressed prototype cavity (in horizontal cryostat
- prototype cryomodule (2 spoke cavities)
- LLRF and high power RF amplifier

4) Acceptance test cryostat-modules

for all final modules before installation

Test Stand Matrix		T P		prototype			series				
			Theat	low power		high power		low power		high power	
PO	Cavitian	(MHZ)	[KAA]	where	when	where	when	where	when	where	when
	fon source			LNS.	_	INS		_	_	on site	
	LEBT buncher	352	10	INS7		INS 2				on site	
	REC	352	1000	CFA.		CEA				on site	
	MERT	-	-	ESS-B 2		ESS-B ?				on site	
	DTL	352	2100	LNL		COM UND	c4)			on site	
	double spoke	352	240	IFNO		UU	2014/5	22			
	medium beta	704	500	CEA		CEA		DESY ?			
	high beta	704	900	CEA		CEA		DESY ?		-	
PI	Couplers	-	_		_	-		_		_	-
-	double spoke	352	800	IPNO		CEA		22		27	
	medium beta.	704	650	CEA ?		CEA		22		22	
	high beta	704	1200	CEA		CEA		25		??	
P2	BF System	i.	-	-	_	-			_		-
-	modulator	(5600	-		ESS				ESS	_
	NClinac	352	2800	-	-	FCC				ESS	
	double spoke	352	300		-	UU	2014	-		ESS	
	medium beta	704	600			ESS		-		E5S	
	high beta		1200	i Gris		ESS				ESS	
P3	Cryamodule	1.721	Trank I	1000	_			1.000			-
	double spoke	352	2x 300	IPNO		UU	2015/6	IPNO		UU	2017/8
	medium beta	704	4x650	CEA	-	CEA	**	CEA/ESS		ESS	
	high beta	704	4x1200	-	~	-		CEA/ESS		ESS	
						1					

What & Whom?

Facility for Research Instrumentation and Accelerator Development

Overview of Activities

<complex-block>

Cryogenics

High Power RF Amplifiers Solid-state & Vacuum Tube

linearcollider.org/M.Grecki

ESS neutrino Super-beam

SRF Test Stand

Controls & Data Acquisition

14-Jul-2015 R. Ruber - Accelerator Research at Uppsala University

The Test Stand

• Three main subsystems needed

Spoke Cavity & Cryomodule

Develop Criteria

Test and

Approve

Analyze

Results

Test

U, Magnitude

deformation

Approve

- IPN Orsay design
 - single spoke
 - $f_0 = 352.21 \text{ MHz}$
 - $T_{oper} = \sim 2K$
- Phase 1: Bare cavity test
 - with antenna (and helium tank)
 - low power
 - verify Orsay measurement at FREIA
- Phase 2: Dressed cavity test
 - with power coupler, tuners
 - full power
 - verify behaviour before ordering series
- Phase 3: Cryomodule & valve box test
 - full power on both cavities
 - verify behaviour before ordering series

The FREIA Laboratory

Cryogenics

Cryogenic System

Commercial tender

- Over 150 l/h at 4.5K (LN2 pre-cooling)
- 2000 I LHe dewar/buffer, 3+1 outlets
- 20 m3 LN2 tank
- 100 m3 gasbag + recovery system
- HNOSS connected in closed loop

HNOSS Horizontal Cryostat

HNOSS: Horizontal Nugget for Operation of Superconducting Systems

Commercial tender

- Main Vacuum Vessel
 - 3240 x ø1300mm inner volume
 - "beam" axis at 1600mm
- Valve box (on top of main vessel)
- Interconnection box (ICB)
 - Distributes cryogens to HNOSS and CM
- Cryogenic transfer lines
 - LN2 and LHe
- Gas heater for return GHe
 from 2K to 300K
- Control system
- + mock-up cavity for acceptance test

Tetrode based

Commercial tender

- based on 2x TH-595, water+air cooled
- SSA pre-amplifier

14-Jul-2015

- · crow-bar with fast solid-state switches
- commercial power supplies

Solid-state based

Industry development

- 4x 100 kW 19" racks
- vendor-specific combiners
 - different per stage

In-house development

- optimized 1 kW transistor modules
- 100 kW compact combiner
- 10 kW prototype amplifier

Using self-excited loop

- Resonance frequency
 4.2K: 352.033MHz
 - 1.8K: 352,029MHz

- Microphonics
 - 14 Hz resonance ??

- Now we have
 - FREIA Laboratory
 - Stockholm-Uppsala FEL Centre
 - experience from NC-RF and SRF; XFEL participation
- Volker Ziemann and Atoosa Meseck wrote a memo in 2012 suggesting to consider a smaller THz FEL
 - and that has become popular since...
 - length max. 10-20 m; beam energy 10-20 MeV
 - The FEL center with Mats Larsson as director is now working towards a THz facility as part of FREIA
- MAXIab application for FEL extension was rejected recently
- Volker Ziemann is preparing another memo suggesting to consider a small X-band FEL in the basement of the Biomedical Center (BMC)
 - length max. 300 m; beam energy ~2 GeV

Preliminary Design THz/X-ray Source

- Accelerator in CW mode with 10 kHz rep-rate
- Purpose of the Compton source is to complement the THz source for pump-probe experiments though it can also be stand-alone.

Why? Low-energy Excitations

New dynamic materials via control of chemical bonds angles

- Ultra-short THz pulses
 - direct access to low energy excitations
 - no parasitic effects from optical transitions
 - low heat deposit
- Physics
 - THz light induced superconductivity
 - Metal to insulator transitions
 - Giant magnetoresonance

Metal

14-Jul-2015 R. Ruber - Accelerator Research at Uppsala University

	Half-cycle pulses for time-resolved experiments	Multi-cycle for frequency- resolved experiments				
Spectral range [THz]	0.3-30	0.3-30				
Pulse duration [ps]	0.1-1	1-10				
Energy [uJ]	1000	100				
Peak Field [GV/m]	1	0.1				
Spectral width [%]	up to 100%	< 10%				
Rep. rate [kHz]	1-100	1-100				
Polarization control + pulse shape control						

Synchronized optical and X-ray pulses for pump-probe experiments

To promote the use of X-band technology for FEL based photon sources

- started with an idea from KVI (NL) to build a small FEL (100m)
 - their proposal was rejected, but the idea is living on
 - demand for new FEL facilities is worldwide continuously increasing, spurring plans for new dedicated machines. This led to a general reconsideration of costs and space issues, particularly for the hard Xray sources, driven by long and expensive multi-GeV NC linacs.
 - for these machines the use of X-band technology can greatly reduce cost and capital investment, reducing the linac length and the size of buildings, opening the way to the construction of a multitude of affordable "Regional Facilities".

- ZFEL proposal (2010)
 - ~100m total length
 - 2.1 GeV beam
 - 0.766 nm wavelength
- XbFEL proposal (2014)
 - 300 MeV injector
 - S-band or X-band for high rep-rate
 - 2 GeV Linac 1
 - 6 GeV Linac 2

 proposing to use CTF3/CALIFES as test bench by converting TBTS to klystron driven line

Uppsala has a long history and is active in several collaborations

- cyclotron will be shut down soon, but
- several exciting projects ongoing, and
- FREIA has opened new opportunities for unique scientific projects
- dreaming to construct a small FEL
 - but in need of a good science case, a "killer app"

Thanks to my colleagues in the different collaborations, at the Dept. of Physics & Astronomy and the FREIA Laboratory.