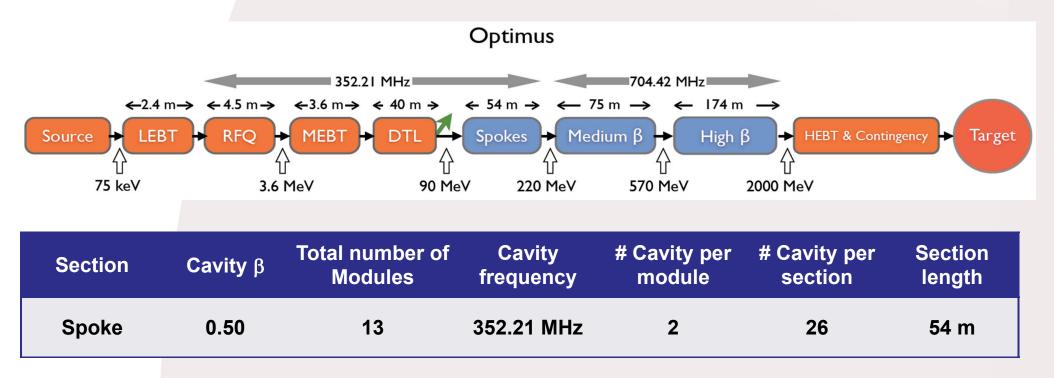
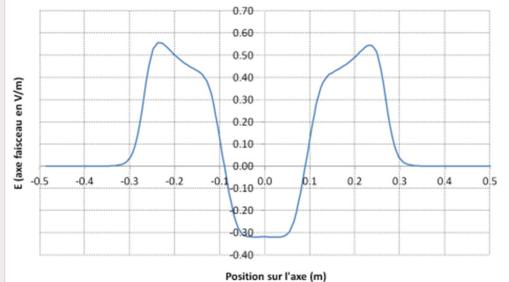
Spoke development status and single spoke test program @ FREIA

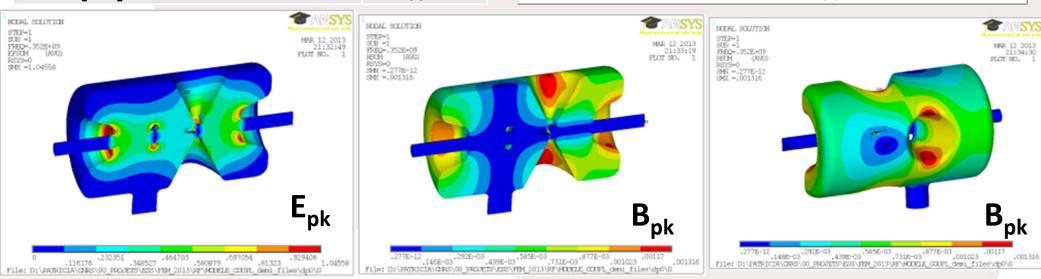

Sébastien Bousson ESS WP 4 leader

Workshop on spoke cavity and RF test program, 20th-21st November 2013

Latest version of the ESS Linac: Optimus

Main consequences for the spoke coming from the cost reduction effort (-> Optimus design) is the increased gradient and increased power to be transmitted to the beam

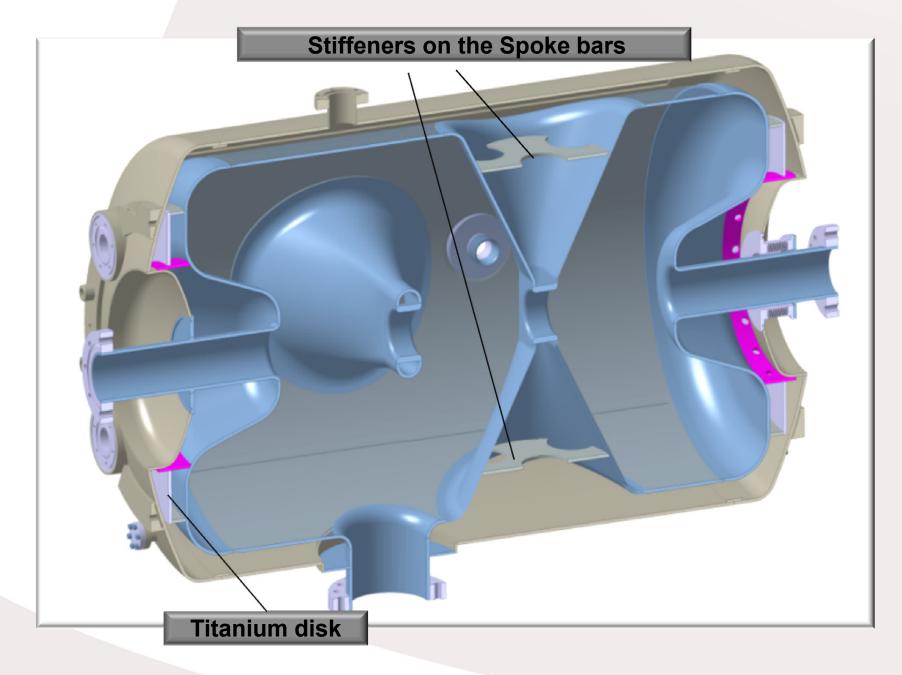




DOUBLE-SPOKE CAVITY						
Frequency [MHz]	352.21					
Beta_optimum	0.50					
Operating gradient [MV/m]	9.0 (8.8)					
Temperature (K)	2					
Bpk [mT]	61					
Epk [MV/m]	38					
G[Ohm]	133					
r/Q [Ohm]	427					
Lacc (=beta optimal x nb of gaps x λ /2) [m]	0.639					
Bpk/Eacc [mT/MV/m]	6.8					
Epk/Eacc	4.3					
P max [kW]	335					

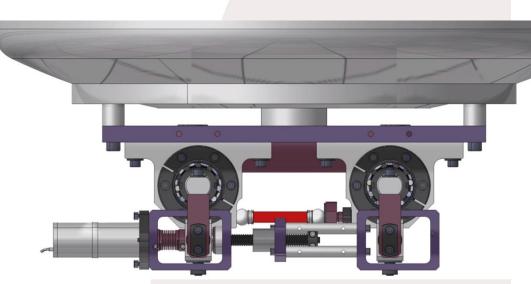
Cavity RF design performed with CST Microwave Studio

Amplitude du champ E longitudinal sur l'axe faisceau (V/m) pour une énergie U = 2,55E-14 J



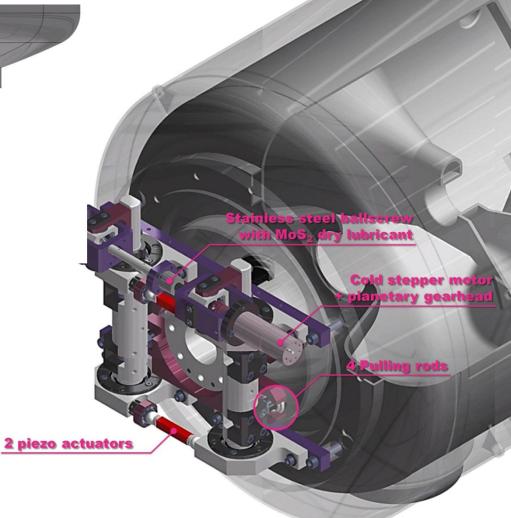
DOUBLE-SPOKE CAVITY	
Qo at low field	6.3 10 ⁹
assuming a Rres (n Ω)	20
and op. temperature (K)	2
Qo @ nominal gradient	1.6 10 9
i.e. assuming a Qo drop of a factor	4
r/Q [Ohm]	427
Operating gradient [MV/m]	9.0 (8.8)

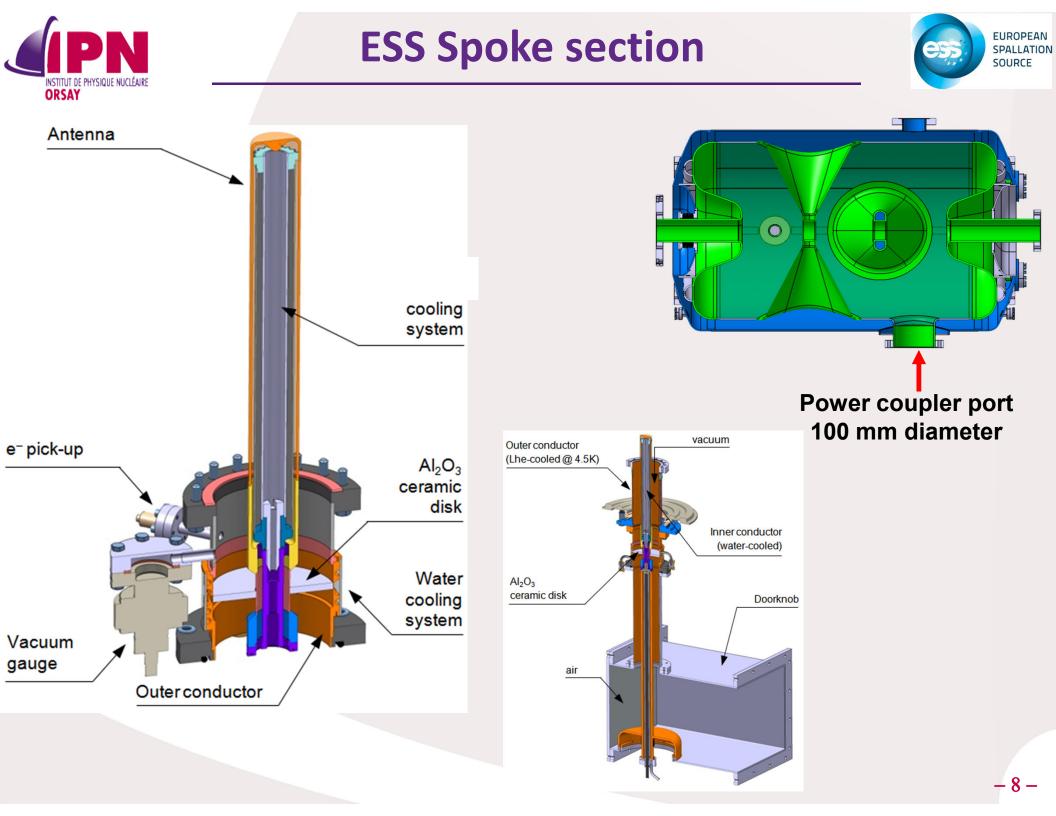
This gives a dynamic heat load per cavity (Eq. in CW) : 2.0 W



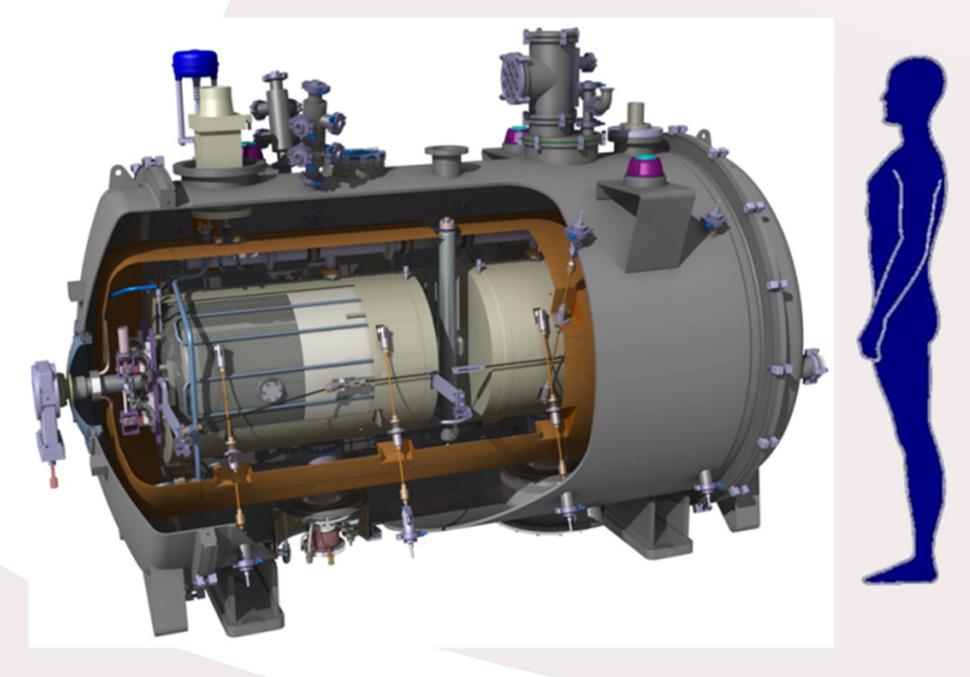
Main mechanical parameters of the prototype cavity									
	Initial de	Final optimization							
Thickness of the cavity walls	4 mm	4 mm							
Critical pressure	1.47 ba	2.77 bar							
Stiffness of the cavity	20 kN/n	20 kN/mm							
Tuning sensitivity $\Delta f / \Delta z$	135 kHz/	128 kHz/mm							
Sensitivity to helium pressure fluctuation K_P without CTS with CTS	essure +16.5 Hz/mbar + 15.5 Hz/ +26.0 Hz/mbar + 23.9 Hz/								
Lorentz forces detuning factor $\rm K_L$ without CTS with CTS	-5.13 Hz/(MV/m) ² -4.4 Hz/(MV/m) ²	For 9 MV/m: ∆f = - 415 Hz ∆f = - 356 Hz	~ id.						

Cavity bandwidth = 1530 Hz (QI = 2.3 10⁵) at nominal (and 1990 Hz for QI = 1.77 10⁵, max value)





CTS parameters / results


Cavity sensitivity	128 kHz/mm
Cavity stiffness	20 kN/mm
Max cavity deformation	1.28 mm
Course / Tuning range	1.28 mm / 160 kHz
Resolution	1 Hz/step
Piezo tuning range	~ 1.5 kHz <i>(tbc)</i>

Prototyping strategy & Schedule

Prototyping of each components before series production

ORSAY

ESS SPOKE PROTOTYPE CRYOMODULE	2012			2013			2014				2015					
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
DESIGN																
Spoke cavities Ancillaries (CTS, Coupler) Cryomodule																
PRODUCTION																
Spoke Cavity Fabrication Nb production for 3 cavities IPNO 3 cavities production Ancillaries Fabrication Power couplers production Cold tuning systems production Cryomodule parts production																
PARTS TESTING																
Vertical Test of the 3 IPNO Cavities Cavity package test @ high power @ UU (Freia)																
Power coupler conditionning CTS tests																
CRYOMODULE ASSEMBLY																
CRYOMODULE TESTING Low power test at IPNO																
High Power tests at UPPSALA																

- 10 -

What to test all over the spoke test program ?

Easy answer: all numbers listed in the **EssSyrAccSpklEmrL4** document (level 4 requirements) and in the corresponding RF and cryo requirement document as well.

Global spoke test program: a 3 stages program on 4 components

5 components:

- cavity
- power coupler
- cold tuner
- cryomodule
- LLRF

3 stages:

- individual tests
- horizontal cryostat tests
- integrated tests in the cryomodule

1. Individual test in vertical cryostat @ IPNO

- Qo = f(Eacc) curve
 - ✓ Qo at low field
 - ✓ Qo at nominal Eacc
 - ✓ Max achievable gradient
 - ✓ Check the benefit of some specific preparation treatment (*H degazing, in-situ baking, ...*)
- Check for MP barriers, assess how difficult/easy it is to process
- Characterized field emission activity (onset, levels, ...)
- **Qt calibration** (and also Qi but far from nominal case)
- Lorentz detuning coefficient ("not nominal" case)
- Sensitivity to helium pressure fluctuation Kp (also in "not nominal" case)

- 2. Test in HNOSS@ FREIA (in the nominal configuration: with a fully dressed cavity)
 - Qo = f(Eacc) curve
 - ✓ Qo at low field (low accuracy measurement)
 - ✓ Qo at nominal Eacc (low accuracy measurement)
 - ✓ Max achievable gradient
 - Check the benefit of some specific preparation treatment
 (H degazing, in-situ baking, ...)
 - **Check for MP barriers,** assess how difficult/easy it is to process with the power coupler
 - Characterized field emission activity (onset, levels, ...)
 - Qt and Qi calibration
 - Lorentz detuning coefficient (closer to "nominal" case)

- 2. Test in HNOSS@ FREIA (in the nominal configuration: with a fully dressed cavity)
 - Sensitivity to helium pressure fluctuation Kp (also closer to "nominal" case)
 - Assess the impact of the power coupler on the intrinsic cavity performances
- One remark: intermediate test of a spoke cavity in HNOSS@ FREIA in the β =1 configuration (no power coupler) could be of interest
 - **HNOSS facility validation** (magnetic shielding efficiency, for a simpler cryo test w/o the complexity of the RF but with a real cryogenic load)
 - Still perform valuable experiments even in case of planning or technical issues with RF amplifier or power couplers

1. Individual test in vertical cryostat @ IPNO

It might be possible to assemble the CTS on the spoke cavity and still fit in Orsay vertical cryostat

- Measure the tuning range (motor & piezo)
- Measure the tuning sensitivity (motor & piezo)
- Hysteresis characterization (if any)

- 2. Test in HNOSS@ FREIA (in the nominal configuration: with a fully dressed cavity)
 - Overall cold tuner operation with the final LLRF: test of the whole RF chain, all the feedback/feed-forward algorithms for frequency regulation
 - **CTS operation in a almost final operating conditions:** *temperature, mechanical environment,...*
 - Perform reliability tests: long term operation ? How long ?

1. RF conditionning @ IPNO (CEA)

- Surface conditioning by "RF cleaning"
- Several configurations (SW, TW)
- Possibly: determine the maximum power that could be sustained -> failure test (with the limit of available RF power)

- 17 -

- 2. Test in HNOSS@ FREIA (in the nominal configuration: with a fully dressed cavity)
 - Measure parameters linked to the cavity coupler coupling:
 - Qi
 - Impact on cavity performances and on cryo load
 - Cooling circuit efficiency
 - Pollution ?
 - Whole RF chain operation with the final LLRF: from RF source to cavity, test all the feedback/feed-forward algorithms for amplitude and phase control
 - Perform reliability tests: long term operation ? How long ?