

The FREIA Test Program

Roger Ruber for the Uppsala Accelerator Group & FREIA

20-21 November 2013, Uppsala ESS-FREIA Spoke Cavity Testing Review and Planning Meeting

1) Contribution to the technical design & construction effort

- design concept spoke accelerating cavity power source
- design concept radio-frequency (RF) power distribution
- survey test stand infrastructure and requirements
- study of upgrade scenarios RF systems for ESS power upgrade
- 2) Development power station for spoke cavities
 - soak test with water cooled load, then accelerating cavity, incl. controls
 - collaboration with industry to develop vacuum tube and solid-state based prototypes

3) System test, power station with spoke cavity and cryostat-module

- fully dressed prototype cavity (in test cryostat)
- complete prototype module (2 spoke cavities)

4) Acceptance test cryostat-modules (proposal submitted)

- for all final modules before installation

Test Stand Matrix		†	P	prototype				series			
				low power		high power		low power		high power	
		[MHz]	[kW]	where	when	where	when	where	when	where	when
PO	Cavities										
	ion source			LNS		LNS				on site	
	LEBT buncher	352	10	LNS ?		LNS ?				on site	
	RFQ	352	1000	CEA		CEA				on site	
	MEBT			ESS-B ?		ESS-B ?				on site	
	DTL	352	2100	LNL		CERH (Lipa	c4)			on site	
	double spoke	352	240	IPNO		UU	2014/5	??			
	medium beta	704	500	CEA		CEA		DESY ?			
	high beta	704	900	CEA		CEA		DESY ?		~	
P1	Couplers										
	double spoke	352	800	IPNO		CEA		??		??	
	medium beta	704	650	CEA ?		CEA		??		??	
	high beta	704	1200	CEA		CEA		??		??	
P2	RF System										
	modulator		5600			ESS				ESS	
	NC linac	352	2800			FSS				ESS	
	double spoke	352	300			UU	2014			ESS	
	medium beta	704	600			ESS				ESS	
	high beta		1200			ESS				ESS	
P3	Cryomodule										
	double spoke	352	2x 300	IPNO		UU	2015/6	IPNO		UU	2017/8
	medium beta	704	4x650	CEA		CEA		CEA/ESS		ESS	
	high beta	704	4x1200					CEA/ESS		ESS	
		1	1	1		1		1		1	

Criteria to judge the test results

- Efficiency
 - to reduce electricity costs
 - reuse cooling water
- Stability
 - relative fast response to perturbations
 - predictability of the system
 - requires testing of extreme conditions
- Reliability
 - slow variations such as drift and aging that affect parameters
 - abrupt failure of something
 - requires long-term soak testing

RF power station & RF distribution

- achieve required performance: 14 Hz, 2.9+t_{fill} ms, power-to-beam+overhead kW_{peak}
- stable long term operation
- safe handling of reflections, sparking, interlocks and faults

LLRF and controls

- RF control (1% amplitude, 1° phase)
- compensation Lorentz detuning & microphonics

Spoke cavity

- achieve required performance:
 - E_{acc} , Q_0 , f_0 , losses
- stable long term operation

Spoke cryo-module

- as for single cavity
- no undesirable coupling between cavities
- achieve cryogenic requirements: cool down, losses

How ?

General idea

- commission and test infrastructure before arrival sub-systems
 - new facility, so must commission equipment to guarantee proper operation
 - personnel should have time to familiarize with equipment
- commission and test each equipment before combining
 - · limited time line towards arrival of cavity
 - limited learning curve towards prototype cryo-module testing

• Will be first major test for FREIA & ESS (of a whole accelerator section)

- critical for decision towards cavity series production
- critical for decision towards RF & LLRF component design and procurement

• Helium and Nitrogen Cryogenics: contract with Linde

- factory test (cold box & controls): January
- delivery & installation: February-March
- commissioning & acceptance test (by Linde): March-April

• HNOSS Cryostat and Transfer Lines: contracts with ACS and Cryo Diffusion

- factory test (LN2): April
- delivery & installation: May-June
- commissioning (by UU and ACS): Summer

• Sub-atmospheric pumps: tender launched last week

- delivery & installation: May-June
- commissioning: Summer

Tetrode based: contract with Electrosys

- factory test tetrodes (Thales, Thonon): this week
- factory test (Electrosys):
- delivery & installation: January-February
- commissioning and acceptance test (by Electrosys): February-March

Solid-state based:Siemens development

- on loan to Uppsala, expected delivery: February

• **RF** Distrbution

- circulator and loads ordered
- tender of remaining parts now under preparation

Controls and Monitoring

- radiation monitoring
- personnel & equipment safety interlocks

Equipment controls

- base controls included in contracts (Cryo Diffusion, Electrosys, Linde)
- overall integration by Uppsala (EPICS based), working with equipment manufacturers

• Data acquisition and monitoring

- RF measurements (amplitude, phase)
- infrastructure & environment monitoring (temperature, pressure & humidity)
- ... any special experiments ...

• LLRF

- under development at Lund, updated as testing progresses...

Only after all other systems have been successfully commissioned

Then...

- install cavity into cryostat
 tooling under design by ACS
- connect cavity vacuum pumping
 always keep pumping if possible...
- connect to cryogenics, RF etc.
- connection & functionality test
 - RF couplers, tuners and instrumentation

Note that this will be the first time

(for cavity, cryostat and team)

Expect extra time for

- connections
- cool down, RF conditioning, testing...

Spoke Cryo-module

We have one year to test the first spoke cavity

- should make optimum use to do it careful
- exhaustive testing for efficiency, stability and reliability
- do it carefully and learn how to operate equipment and assembly
- polish any issues
 - to prepare for order of series production
 - arrival of prototype cryo-module

Prototype spoke cryo-module

- repeat the single cavity experience
- test cryostat behaviour
- search for any correlation and interactions between cavities
- polish any issues and learn to install/test/remove
 - prepare for series testing of cryo-modules

- Further discussions during this meeting
 - We have ideas on the testing but want to discuss with you for your input and experience
 - Onset to a commonly agreed test program

Thanks to you all !

At present many IT projects disregard to test extra non-functional characteristics of the systems they implement