

FREIA

Facility for Research Instrumentation and Accelerator Development Infrastructure and Control Architecture

Konrad Gajewski

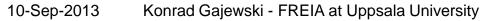
10 September 2013, Uppsala

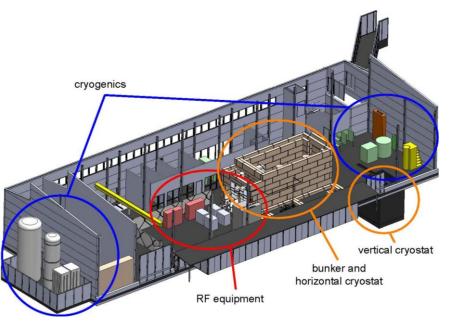


Several circumstances

- test stand for ESS needs large experiment space and bunker
- university's helium liquefier in need of replacement

University decides on new construction at the Ångström laboratory (2010)


What FREIA?


Facility for Research Instrumentation and Accelerator Development

- General Infrastructure
 - LHe and LN2 production and distribution
 - small workshop, control room
 - concrete bunkers
- RF/SRF test stands
 - RF sources: 352 MHz (12 GHz in future)
 - horizontal test cryostat (vertical in future)
- Neutron generator
 - neutron tomography, detector tests
 - student exercises and projects

FREIA Cryogenic Centre

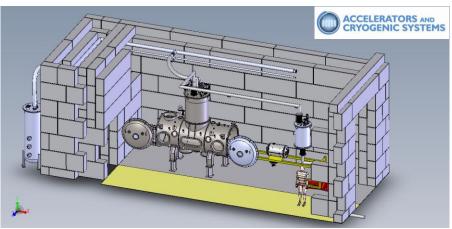
supported by

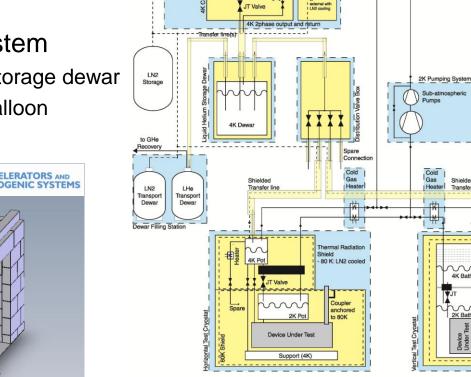
Wallenberg

foundation

Gas Helium Recover

Cooling - Water


> Impurities Analyze


Shielded

4K Batt

Oil Separate

- Multiple users
 - external users (dewars)
 - horizontal test cryostat
 - vertical test cryostat (future extension)
- Liquid nitrogen
 - 20 m3 tank
- Helium liquefier & recovery system
 - 140 l/h peak load at 4 K, 2000 l storage dewar
 - 80 m3/h recovery, 100 m3 gas balloon
 - ~8 g/s, 80 W peak load at 2 K

Medium Pressure Pure Gas Storage

Liquid Nitrogen Pre-cooling

Cold Trap (or via ext. purifier)

Gas

Analyze

Gas Analyzer

1) Contribution to the technical design & construction effort

- design concept 352 MHz spoke source
- design concept RF distribution
- survey test stand infrastructure and requirements
- study of upgrade scenarios RF systems for ESS power upgrade

2) Development 352 MHz RF power station for spokes

- soak test with water load and SRF spoke resonator, incl. LLRF
- collaboration with industry to develop tetrode and solid-state based prototypes

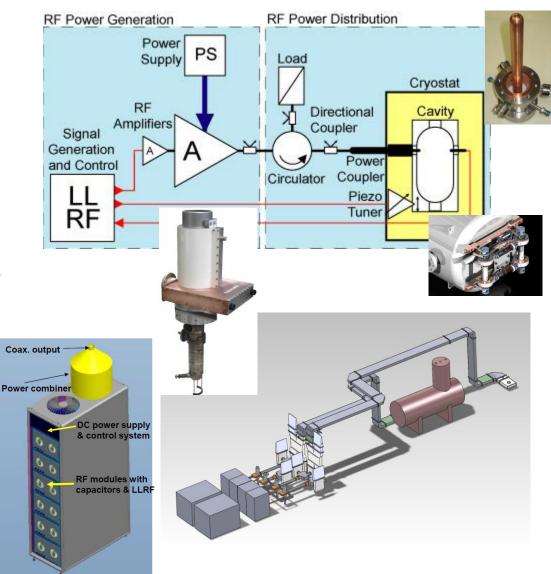
3) System test, RF power station with spoke cavity and cryomodule

- fully dressed prototype cavity (in test cryostat)
- complete prototype cryomodule (2 cavities)

Acceptance test spoke cryomodules (Eol submitted)

for all final cryomodules before installation

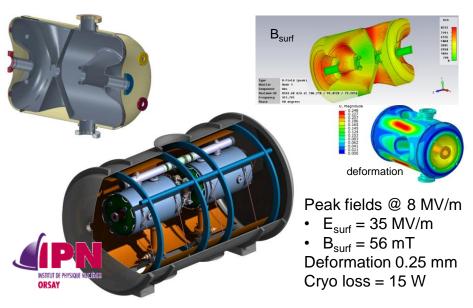
Tes	t Stand Matrix	f [MHz]	P [kW]	prototype				series				
				low p	ower	high p	high power		low power		high power	
				where	when	where	when	where	when	where	when	
PO	Cavities											
	ion source			LNS		LNS				on site		
	LEBT buncher	352	10	LNS?		LNS ?				on site		
	RFQ	352	1000	CEA		CEA				on site		
	MEBT			ESS-B ?		ESS-B ?				on site		
	DTL	352	2100	LNL		CERN (Lina	c4)			on site		
	double spoke	352	240	IPNO		UU	2014/5	??				
	medium beta	704	500	CEA		CEA		DESY ?				
	high beta	704	900	CEA		CEA		DESY ?				
		2.1144.222										
P1	Couplers											
	double spoke	352	800	IPNO		CEA		??		??		
	medium beta	704	650	CEA ?		CEA		??		??		
	high beta	704	1200	CEA		CEA		??		??		
P2	RF System											
	modulator		5600			ESS				ESS		
	NC linac	352	2800			ESS				ESS		
	double spoke	352	300			UU	2014			ESS		
	medium beta	704	600			ESS		100		ESS		
	high beta		1200			ESS				ESS		
P3	Cryomodule											
	double spoke	352	2x 300	IPNO		UU	2015/6	IPNO		UU	2017/8	
	medium beta	704	4x650	CEA		CEA		CEA/ESS		ESS		
	high beta	704	4x1200	622				CEA/ESS		ESS		



FREIA 352 MHz RF Source

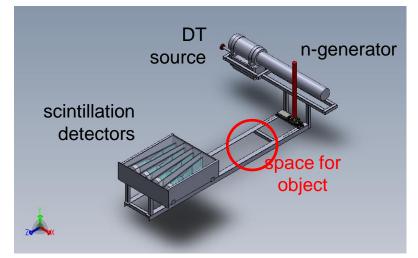
RF source development

- 350 kW power amplifier
 - for FREIA testing (2pc)
 - for ESS linac (26pc)
- tetrode based: 2xTH595
 - commercial available solution
 - confirmed >200 kW per tetrode
 - soak test at FREIA
- solid-state based:
 - commercial development
 - promises high MTBF, low MTTR
 - soak test at FREIA


Approved Projects

ESS Spoke Linac

High power test RF system, spoke cavity and cryomodule


- high power testing of RF power source, LLRF controls, amplitude and phase stability with cavity
- test cavity tuning system, dynamic load, electron emission and multipactoring

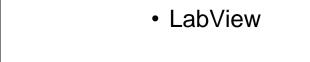
Neutron Generator

Access to neutrons

- neutron tomography and detector tests
- student exercises and projects
- physics experiments in combination with Ge gamma-detector
 - nuclear fission
 - activation analysis

Control System Overview


- EPICS
- Subsystems
 - Cryogenics (Linde)
 - Test cryostat (CryoDiffusion)
 - Vacuum
 - RF Power Supplies & Amplifiers (Electrosys)
 - LLRF (LU)
 - Timing
 - Safety systems (MPS, PPS)
- Instrumentation
- Control System Studio



- Local controls based on Siemens Simatic S7-315 PLC
- Has local controls and interface to EPICS
- Cooling water
 - Pumps
 - Valves
 - PLC controller
- RF Power Supplies & Amplifiers (Electrosys)
 - Anode PS
 - Control Screen PS, Grid Screen PS
 - Filament PS
 - Solid State Amplifier

Controlled locally by microcontroller and interfaced to Epics via Ethernet. Digital input/outputs for overall status and interlocks

Final solution for the cavity tests

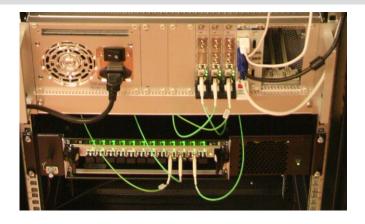
 LLRF system supplied by ESS based on system developed at DESY

• LLRF

Initial solution for tests on a dummy load

- Function generator
- Digital oscilloscope
- Vector network analyzer

Timing system


Timing

Event generator

Micro-Research cPCI-EVG-230

- Front panel RF input and programmable divider /1, /2, /3, ..., /12, /14, ..., /20 to generate event clock
- Event clock rate 50 MHz to 125 MHz
- Front panel mains synchronization input
- 4 hardware inputs
- Optional side-by-side module for additional 6 inputs
- Up to 255 events
- Heart-beat
- Can be used for distribution of interlock signals

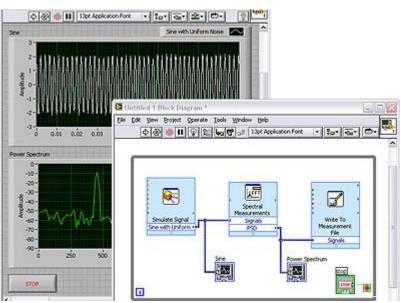
Event receiver Micro-Research cPCI-EVR-230

- 2 front panel trigger inputs
- 2 universal I/O slots for four hardware outputs
- Optional side-by-side module for three additional universal I/O slots
- Jitter typically < 25 ps rms
- RF Clock 88.052500 MHz
- Event granuality ~110 ns

Safety Systems

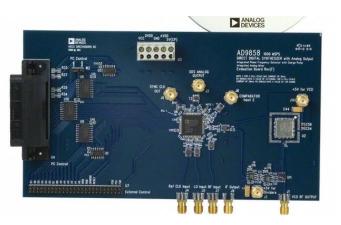
- Machine Protection System
 - PLC for the "slow" interlocks tenths of ms
 - Fast interlocks implemented in hardware
 - Interlock distribution possible on the timing system bus
 - Post mortem data

- Personnel Protection System
 - Radiation protection system
 - Access control
 - RF leakage interlock


Laboratory instruments

- Digital oscilloscopes
- Vector Network Analyzer with power measurement probes (Agilent N5221A)
- Signal generators
- Programmed with LabVIEW

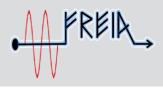
Integrated with EPICS


- L. A

Instrumentation

- Fast ADC for directly sampling the signals from the directional couplers and cavity antenna
 - sampling at 150 MSa/s, 14 bits,
 - input bandwidth > 400 MHz
 - no need for mixers
 - inexpensive system
- Direct digital synthesizer (DDS) for generating RF signal to the cavity

- NI PXIe based system
 - Fast ADC
 - FPGA


Chassis

Controller

Instrument Modules

Specification		160	NI PXIe-5162				
Variant	Good	Better	Best	Good	Better	Best	
Form Factor		4)	PXIe (x4)				
ADC Resolution		1	10-bit				
Onboard Memory	64 MB	2 GB	2GB	64 MB	1 GB	1 GB	
Number of Channels	2	2	4	2	2	4	
Sample Rate (4 Channel)	N/A	N/A	1.25 GS/s	N/A	N/A	1.25 GS/s	
Sample Rate (2 Channel)		/s	2.5 GS/s				
Sample Rate (1 Channel)		2.5 GS	ls	5 GS/s			
Input Impedance	50 (Ohm/1	MOhm	50 Ohm / 1 MOhm			
Real-time Bandwidth (50 Ohm)		500MH	lz	1.5 GHz			
Real-time Bandwidth (1 MOhm)		łz	300 MHz				
Input Ranges (50 Ohm)	50, 1	500 mV V	50, 100, 200, 500 mV 1, 2, 5 V				
Input Ranges (1 MOhm)	102-	00, 200, , 5, 10, 2		50, 100, 200, 500 mV 1, 2, 5, 10, 20, 50 V			
Coupling		AC/DO	5	AC/DC			
Selectable Filters	20	MHz, 17	5 MHz	20 MHz, 175 MHz			

Infrastructure

- Experimental area approx. 700 m²
- Cryogenic plant (LHe)
 - peak140 l/min at 4 K
 - 2000 I storage dewar
 - 80 W peak load at 2 K
- Available electrical power 900 kVA
- Cooling capacity (deionized water) 600 kW
- 3 concrete bunkers
- 352 MHz, 350 kW RF power station
- 352 MHz RF distribution
- Horizontal test cryostat
- Place for vertical cryostat

Control System

- Based on Epics
- Subsystems with autonomous local controllers integrated with Epics
- Use of PLC systems wherever possible
- Use of ESS' Control Box for faster controls and timing
- Laboratory instruments programmed with LabVIEW
- Fast measurements (RF signals) using NI PXIe system and LLRF