Search for Charginos and Sleptons in ATLAS

Paweł Klimek

Stockholm University

October 22, 2015

・ロト ・回ト ・ヨト

Why Beyond Standard Model Physics?

SM is very successful theory

- No significant tension with experiment
- Predicts the widest range of physics phenomena
- SM in not a fundamental theory
 - Gravitation is not incorporated
 - Unknown origin of dark matter and dark energy
 - Hierarchy problem
 - Unknown origin of neutrino masses

Beyond Standard Model

- Hierarchy problem can be solved for example by:
 - Supersymmetry:
 - Symmetry which leads to a new sets of the particles
 - Their contributions cancel out the contributions of the SM particles in the correction term of Higgs mass
 - Large extra dimensions:
 - Additional spacial dimensions cause the Planck scale to be much lower
- Dark Matter can be explained for example by:
 - Supersymmetry:
 - New quantum number: *R*-parity
 - If *R*-parity is conserved, LSP is stable and is a good dark matter candidate
 - Universal extra dimensions:
 - New quantum number: *KK*-parity
 - KK-parity conservation causes LKP is stable and is a good dark matter candidate

Supersymmetry

- Extends the Standard Model
- Each SM particle has at least one superpartner
- Superpartners have the same properties as their SM counterparts except for the spin that differs by 1/2
- SUSY is broken since superpartners have higher masses

The known world of Standard Model particles

The hypothetical world of SUSY particles

- Provides solution for hierarchy problem
- If *R*-parity is conserved, provides a dark matter candidate

イロト イヨト イヨト イヨト

Supersymmetry

- $\blacksquare \text{ Number of events at the LHC: } \\ N = \mathscr{L} \times \sigma$
- Cross section depends on the masses and couplings of the SUSY particles
- SUSY searches were focused on strong production at the beginning of the LHC run
- SUSY weak production can be dominating at the LHC if squarks/gluinos are heavy and neutralinos/charginos are light

ヘロト ヘヨト ヘヨト ヘ

The Large Hadron Collider

Collides protons collisions at:

- $\sqrt{s} = 7$ TeV (2010-2011) • $\sqrt{s} = 8$ TeV (2012) • $\sqrt{s} = 13$ TeV (2015)
- Collisions every 50 ns (25 ns starting in 2015)
- Circumference: 26.7 km
- Four main experiments
 - ATLAS
 - CMS
 - ALICE
 - LHCb

The ATLAS Detector

- A Toroidal LHC ApparatuS
- General purpose detector
- Detector characteristics
 - Width: 44 m
 - Diameter: 25 m
 - Weight: 7000 t
- Subdetectors
 - Inner Detector
 - Calorimeters
 - Muon Spectrometer

Particle Identification

$$E_{\mathrm{T}}^{\mathrm{miss}} = \left| -\sum \mathbf{p}_{\mathrm{T}}^{e} - \sum \mathbf{p}_{\mathrm{T}}^{\mu} - \sum \mathbf{p}_{\mathrm{T}}^{j} - \dots - \sum \mathbf{p}_{\mathrm{T}}^{\mathrm{uncl}} \right|$$

Paweł Klimek (Stockholm University)

Characteristics of the Signal

Search for Chargino and Slepton Pairs Directly Produced in ATLAS

- JHEP 05 (2014) 071
- Signal signature
 - 2 leptons
 - \bullet $E_{\rm T}^{\rm miss}$
 - no final state jets
- Used the entire dataset recorded with dilepton triggers in 2012 (20.3 fb⁻¹) at $\sqrt{s} = 8$ TeV

Signal Characteristic Observable

- The stransverse mass (m_{T2}) is defined to measure the transverse mass of the system of two particles decaying to a visible and an invisible particle
- Kinematic edge at the value of the mass of the system of two primary particles

$$m_{\rm T2} \le (m_{\tilde{\ell}}^2 - m_{\tilde{\chi}_1^0}^2) / m_{\tilde{\ell}}$$

- SUSY signal events can have values of m_{T2} exceeding the W mass
- \blacksquare Used to suppress WW background

Image: A math a math

Standard Model Backgrounds

Signal Regions Definition

Calculation of ZV Background

■ ZV stands for Z+jets, ZW, ZZ and Z+two vector bosons

$$N_{ZV}^{\mathrm{SR}} = N_{ZV, \mathrm{MC}}^{\mathrm{SR}} \times \mathcal{S}$$

where

$$\mathcal{S} = \frac{N_{ZV, \text{ data}}^{\text{CR}} - N_{\text{non-}Z, \text{ MC}}^{\text{CR}}}{N_{ZV, \text{ MC}}^{\text{CR}}}$$

CR-ZV

Opposite sign leptons	~
Lepton flavour	$ee, \mu\mu$
$p_{\mathrm{T}}^{\ell 1}$	> 35 GeV
$p_{\mathrm{T}}^{\ell 2}$	> 20 GeV
$m_{\ell\ell}$	> 20 GeV
$ m_{\ell\ell}-m_Z $	< 10 GeV
signal central jets	= 0
signal <i>b</i> -jets	= 0
signal forward jets	= 0
m_{T2}	$>90~{\rm GeV}$

Paweł Klimek (Stockholm University)

Calculation of WW Background

$$N_{WW}^{\rm SR} = N_{WW, \rm MC}^{\rm SR} \times \mathcal{S}$$

where

s _	$N_{WW, c}^{CR}$	$_{lata} - N$	$V_{\text{non-}WW}^{\text{CR}}$	MC
$\mathcal{O} =$	· · ·	$N_{WW}^{\rm CR}$, мс	

CR-	W	W
-----	---	---

Opposite sign leptons	~
Lepton flavour	$e\mu$
$p_{\mathrm{T}}^{\ell 1}$	> 35 GeV
$p_{\mathrm{T}}^{\ell 2}$	$> 20 { m ~GeV}$
$m_{\ell\ell}$	> 20 GeV
signal central jets	= 0
signal <i>b</i> -jets	= 0
signal forward jets	= 0
m_{T2}	[50, 90] GeV

 In agreement with the ATLAS measurement of the WW production cross section

Top Background Estimation

$$N_{\mathrm{Top}}^{\mathrm{SR}} = N_{\mathrm{Top, MC}}^{\mathrm{SR}} \times \mathcal{S} \times C_{\mathcal{S}}$$

where

$$S = \frac{N_{
m Top,\ data}^{
m CR}}{N_{
m Top,\ MC}^{
m CR}}$$
 and $C_S = \frac{\mathcal{E}_{
m data}^{
m jet - veto}}{\mathcal{E}_{MC}^{
m jet - veto}}$

 \blacksquare C_S used to address potential difference in the jet-veto efficiency between data and MC

Opposite sign leptons Lepton flavour $e\mu$ $p_{T}^{\ell_1} > 35 \text{ GeV}$	CR-Top	
$\begin{array}{ccc} p_{1}^{r} & > 20 \text{ GeV} \\ m_{\ell\ell} & > 20 \text{ GeV} \\ \text{signal central jets} & = 0 \\ \text{signal b-jets} & \geq 1 \\ \text{signal forward jets} & = 0 \\ \end{array}$	$\begin{array}{c} \text{Opposite sign leptons} \\ \text{Lepton flavour} \\ p_{T}^{\ell_{T}} \\ p_{T}^{\ell_{T}} \\ m_{\ell\ell} \\ \text{signal central jets} \\ \text{signal b-jets} \\ \text{signal forward jets} \end{array}$	$e\mu$ > 35 GeV > 20 GeV > 20 GeV = 0 ≥ 1 = 0 ≥ 70 GeV

Scale factor
$$\mathcal{S} = 1.02 \pm 0.04$$

- No significant excess over the expected Standard Model background observed
- Limits at 95% CL on chargino and slepton production derived
 - Dashed black line: expected limits
 - Solid red line: observed limits
 - Yellow band:

experimental uncertainties on the expected limits

Dashed red lines:

impact on the observed limits when the signal cross section is scaled up and down by 1σ of theoretical uncertainties

イロト イヨト イヨト イ

 Chargino mass between 140 GeV and 470 GeV is excluded for massless neutralino at 95% CL

 Chargino mass between 100 GeV and 180 GeV is excluded for massless neutralino at 95% CL

 A common value for left- and righthanded slepton mass between
 90 GeV and 330 GeV is excluded for massless neutralino at 95% CL

A B > A B >

Search for Chargino Pairs Produced via VBF in ATLAS

- Submitted to Phys. Rev. D arXiv:1509.07152 [hep-ex]
- Signal signature
 - 2 leptons
 - 2 jets
 - $\bullet E_{T}^{miss}$
- VBF production of SUSY particles investigated for the first time in ATLAS
- If observed it would prove that the exchanged $\tilde{\chi}_i^0$ is a Majorana particle
- Targeting scenarios with small mass differences m_{\(\tilde{\chi}\)[±]} − m_{\(\tilde{\chi}\)¹}</sub>

■ Used the entire dataset recorded with E^{miss}_T triggers in 2012 (20.3 fb⁻¹) at √s = 8 TeV

イロト イヨト イヨト イ

Signal Characteristic Observable

- Lepton Observables
 - Dilepton invariant mass $(m_{\ell\ell})$
 - Stransverse mass (m_{T2})
- Jet Observables
 - Dijet invariant mass (m_{jj})
 - Jet transverse momentum $(p_{\rm T}^j)$
 - $|\Delta\eta|$ between two leading jets ($|\Delta\eta_{jj}|$)
- Missing transverse energy ($E_{\mathrm{T}}^{\mathrm{miss}}$)

Characteristics of the Signal

Standard Model Backgrounds

Signal Region Optimisation

- Figure of merit:
 - p-value
 - at least 3.5 signal events

	Signal Region		
	Same sign leptons	~	
	Lepton flavour	$ee, \mu\mu, e\mu$	
	$E_{\mathrm{T}}^{\mathrm{miss}}$	$> 120 { m ~GeV}$	
	signal <i>b</i> -jets	= 0	
Small	$p_{\mathrm{T}}^{e}(p_{\mathrm{T}}^{\mu})$	> 7 (5) GeV	
mass gan	$m_{\ell\ell}$	$< 100 { m ~GeV}$	
signature	$m_{ m T2}$	< 40 GeV	
Signature	$p_{\rm T}^{\ell\ell}/E_{\rm T}^{\rm miss}$	< 0.4	
ĺ	signal light + forward jets	≥ 2	
	p_{T}^{j1}	> 95 GeV	
	$ \Delta \eta_{jj} $	> 1.6	
VBF signature	$\eta_{i1} \cdot \eta_{i2}$	< 0	
	m_{jj}	> 350 GeV	
	$p_{\rm T}^{j1}/E_{\rm T}^{\rm miss}$	< 1.9	
l	$p_{\mathrm{T}}^{\ell\ell}/p_{\mathrm{T}}^{jj}$	< 0.35	

Diboson Background Estimation

- Simulated with LO generator (Sherpa) and normalised with NLO cross section using PowhegBox (WW) and VBFNLO (WZ)
- The LO Sherpa samples are normalised to yield the same number of events in the fiducial region as the NLO generator
- Fiducial region is a region as close to the signal region as possible

Theoretical uncertainty is assigned to the predicted NLO values

- Generator, PDF, scale, parton showering
- ZZ background is small and estimated using LO Monte Carlo

Results

- Good agreement between observed data and estimated background
- The uncertainty band represents the total statistical and systematic uncertainty on the Monte Carlo prediction

Event Display

 Event display of one VBF signal-like collision event in ATLAS data from October 27, 2012

•
$$p_{
m T}^{\mu 1} = 19 \,\, {
m GeV}, \, p_{
m T}^{\mu 2} = 7 \,\, {
m GeV}$$

•
$$p_{\mathrm{T}}^{j1} = 146~\mathrm{GeV}$$
, $p_{\mathrm{T}}^{j2} = 31~\mathrm{GeV}$

■ *m_{jj}*=1.2 TeV

• $E_{\mathrm{T}}^{\mathrm{miss}}$ = 130 GeV

イロト イヨト イヨト イヨト

nac

Results

Exclusion Limits

- No significant excess over the expected Standard Model background observed
- The 95% CL upper limit on the cross section for same sign $\tilde{\chi}_1^{\pm}\tilde{\chi}_1^{\pm}$ pair production via VBF is set with respect to the mass difference $m_{\tilde{\chi}_1^{\pm}} - m_{\tilde{\chi}_1^0}$

Conclusions & summary

- Supersymmetry is a theory that can address some of the shortcomings of the Standard Model
- Electroweak production of supersymmetric particles can be dominating at the LHC if squarks/gluinos are heavy and neutralinos/charginos are light
- No significant excess over the expected Standard Model background is observed
- Limits on the masses of charginos and sleptons are set at 95% CL
- Upper limit on the cross section for same sign X₁[±]X₁[±] pair production via VBF is set with respect to the mass difference m_{x₁[±]} − m_{x₁⁰} at 95% CL
- The LHC Run II data will allow to study the wider range of parameter space and provide the sensitivity to SUSY production via VBF

イロト イポト イヨト イヨト