Search for Charginos and Sleptons in ATLAS

Paweł Klimek

Stockholm University

October 22, 2015

K ロ ト K 倒 ト K ミ ト

 290

Why Beyond Standard Model Physics?

SM is very successful theory

- No significant tension with experiment
- Predicts the widest range of physics phenomena
- SM in not a fundamental theory
	- Gravitation is not incorporated
	- **Unknown origin of dark matter and** dark energy
	- Hierarchy problem
	- **Unknown origin of neutrino masses**

Beyond Standard Model

- \blacksquare Hierarchy problem can be solved for example by:
	- Supersymmetry:
		- Symmetry which leads to a new sets of the particles
		- Their contributions cancel out the contributions of the SM particles in the correction term of Higgs mass
	- Large extra dimensions:
		- Additional spacial dimensions cause the Planck scale to be much lower
- Dark Matter can be explained for example by:
	- Supersymmetry:
		- New quantum number: R -parity
		- If R -parity is conserved, LSP is stable and is a good dark matter candidate
	- Universal extra dimensions:
		- New quantum number: KK -parity
		- \blacksquare KK-parity conservation causes LKP is stable and is a good dark matter candidate

 QQ

メロト メタト メミトメ

Supersymmetry

- Extends the Standard Model
- Each SM particle has at least one superpartner
- Superpartners have the same properties as their SM counterparts except for the spin that differs by 1/2
- SUSY is broken since superpartners have higher masses

The known world of **Standard Model particles**

The hypothetical world of **SUSY particles**

- Provides solution for hierarchy problem
- If R -parity is conserved, provides a dark matter candidate

イロト イ部 トイモト イモ

 QQ

Supersymmetry

- Number of events at the LHC: $N = \mathscr{L} \times \sigma$
- Cross section depends on the masses and couplings of the SUSY particles
- SUSY searches were focused on strong production at the beginning of the LHC run
- SUSY weak production can be dominating at the LHC if squarks/gluinos are heavy and neutralinos/charginos are light

K ロ ト K 倒 ト K ミ ト

 QQ

The Large Hadron Collider

Collides protons collisions at:

 \sqrt{s} = 7 TeV (2010-2011) \sqrt{s} = 8 TeV (2010- \sqrt{s} = 8 TeV (2012) \sqrt{s} = 13 TeV (2015)

- Collisions every 50 ns (25 ns starting in 2015)
- Circumference: 26.7 km
- Four main experiments
	- **ATLAS**
	- CMS
	- **ALICE**
	- **LHCb**

The ATLAS Detector

- A Toroidal LHC ApparatuS
- General purpose detector
- **Detector characteristics**
	- $Width: 44 m$
	- Diameter: 25 m
	- Weight: 7000 t
- **Subdetectors**
	- **Inner Detector**
	- Calorimeters
	- **Muon Spectrometer**

メロト メタト メミトメ

 QQ

Particle Identification

$$
E_{\mathrm{T}}^{\mathrm{miss}} = \left| -\sum \mathbf{p}_{\mathrm{T}}^{e} - \sum \mathbf{p}_{\mathrm{T}}^{\mu} - \sum \mathbf{p}_{\mathrm{T}}^{j} - \ldots - \sum \mathbf{p}_{\mathrm{T}}^{\mathrm{uncl}} \right|
$$

Paweł Klimek (Stockholm University) [Electroweak SUSY at the LHC](#page-0-0) October 22, 2015 8 / 28

 290

Search for Chargino and Slepton Pairs Directly Produced in ATLAS

- \blacksquare JHEP 05 (2014) 071
- Signal signature
	- \Box 2 leptons
	- $E_{\rm T}^{\rm miss}$
	- no final state jets
- Used the entire dataset recorded with dilepton triggers in 2012 (20.3 fb⁻¹) at $\sqrt{s} = 8$ TeV

Signal Characteristic Observable

- \blacksquare The stransverse mass (m_{T2}) is defined to measure the transverse mass of the system of two particles decaying to a visible and an invisible particle
- Kinematic edge at the value of the mass of the system of two primary particles

$$
m_{\rm T2} \leq (m^2_{\tilde\ell}-m^2_{\tilde\chi_1^0})/m_{\tilde\ell}
$$

- SUSY signal events can have values of m_{T2} exceeding the W mass
- \blacksquare Used to suppress WW background

4 ロ ト 4 何 ト 4 日

 OQ

Standard Model Backgrounds

Signal Regions Definition

Calculation of ZV Background

 ZV stands for $Z +$ jets, ZW , ZZ and $Z+$ two vector bosons

$$
N_{ZV}^{\text{SR}} = N_{ZV, \text{ MC}}^{\text{SR}} \times \mathcal{S}
$$

where

$$
\mathcal{S} = \tfrac{N_{ZV, \ \text{data}}^{\text{CR}} - N_{\text{non-Z, \ MC}}^{\text{CR}}}{N_{ZV, \ \text{MC}}^{\text{CR}}}
$$

Calculation of WW Background

$$
N^{\text{SR}}_{WW} = N^{\text{SR}}_{WW, \text{ MC}} \times \mathcal{S}
$$

where

In agreement with the ATLAS measurement of the WW production cross section

Top Background Estimation

$$
N_{\text{Top}}^{\text{SR}} = N_{\text{Top, MC}}^{\text{SR}} \times \mathcal{S} \times C_{\mathcal{S}}
$$

where

$$
\mathcal{S} = \frac{N_{\text{Top, data}}^{\text{CR}}}{N_{\text{Top, MC}}^{\text{CR}}} \quad \text{and} \quad C_{\mathcal{S}} = \frac{\mathcal{E}_{\text{data}}^{\text{jet-vector}}}{\mathcal{E}_{MC}^{\text{jet-vector}}}
$$

 C_S used to address potential difference in the jet-veto efficiency between data and MC

■ Scale factor
$$
S = 1.02 \pm 0.04
$$

- No significant excess over the expected Standard Model background observed
- Limits at 95% CL on chargino and slepton production derived
	- Dashed black line: expected limits
	- Solid red line: observed limits
	- **Yellow band:**

experimental uncertainties on the expected limits

Dashed red lines:

impact on the observed limits when the signal cross section is scaled up and down by 1σ of theoretical uncertainties

■ Chargino mass between 140 GeV and 470 GeV is excluded for massless neutralino at 95% CL

Chargino mass between 100 GeV and 180 GeV is excluded for massless neutralino at 95% CL

A common value for left- and righthanded slepton mass between 90 GeV and 330 GeV is excluded for massless neutralino at 95% CL

Search for Chargino Pairs Produced via VBF in ATLAS

- Submitted to Phys. Rev. D arXiv:1509.07152 [hep-ex]
- Signal signature
	- 2 leptons
	- \blacksquare 2 jets
		- $E_{\rm T}^{\rm miss}$
- VBF production of SUSY particles investigated for the first time in ATLAS
- \blacksquare If observed it would prove that the exchanged $\tilde{\chi}^0_i$ is a Majorana particle
- Targeting scenarios with small mass differences $m_{\tilde{\chi}^\pm_1} - m_{\tilde{\chi}^0_1}$

Used the entire dataset recorded with $E_{\rm T}^{\rm miss}$ trigge<mark>rs in</mark> 2012 with $E_{\rm T}$ triggers in 2012
(20.3 fb⁻¹) at $\sqrt{s} = 8$ TeV

メロト メタト メミトメ

 OQ

Signal Characteristic Observable

- **Lepton Observables**
	- Dilepton invariant mass $(m_{\ell\ell})$
	- Stransverse mass (m_{T2})
- **Jet Observables**
	- **Dijet invariant mass** (m_{ij})
	- Jet transverse momentum $(p_{\rm T}^j)$
	- $|\Delta \eta|$ between two leading jets $(|\Delta \eta_{ij}|)$
- Missing transverse energy $\left(E_{\rm T}^{\rm miss}\right)$

Standard Model Backgrounds

Signal Region Optimisation

- Figure of merit:
	- p -value
	- at least 3.5 signal events

Diboson Background Estimation

- Simulated with LO generator (Sherpa) and normalised with NLO cross section using PowhegBox (WW) and VBFNLO (WZ)
- **The LO Sherpa samples are normalised to yield the same number of events in** the fiducial region as the NLO generator
- **Fiducial region is a region as close to the signal region as possible**

■ Theoretical uncertainty is assigned to the predicted NLO values

- Generator, PDF, scale, parton showering
- \blacksquare \blacksquare \blacksquare ZZ background is small and estimated using L[O M](#page-22-0)[on](#page-24-0)[t](#page-22-0)[e](#page-23-0) [C](#page-24-0)ar[lo](#page-23-0)

 Ω

Results

- Good agreement between observed data and estimated background
- ■ The uncertainty band represents the total statistical and systematic uncertainty on the Monte Carlo prediction

Event Display

Event display of one VBF signal-like collision event in ATLAS data from October 27, 2012

$$
p_{\mathrm{T}}^{\mu 1}=19\,\,\text{GeV},\,p_{\mathrm{T}}^{\mu 2}=7\,\,\text{GeV}
$$

$$
p_{\rm T}^{j1}=146~{\rm GeV},~p_{\rm T}^{j2}=31~{\rm GeV}
$$

- $m_{ij}=1.2$ TeV
- $E_{\rm T}^{\rm miss}$ = 130 GeV

イロト イ御 トメ ミト メモ

 290

- No significant excess over the expected Standard Model background observed
- The 95% CL upper limit on the cross section for same sign $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\pm}$ pair production via VBF is set with respect to the mass difference $m_{\tilde{\chi}^\pm_1} - m_{\tilde{\chi}^0_1}$

Conclusions & summary

- **Supersymmetry is a theory that can address some of the shortcomings** of the Standard Model
- **E** Electroweak production of supersymmetric particles can be dominating at the LHC if squarks/gluinos are heavy and neutralinos/charginos are light
- No significant excess over the expected Standard Model background is observed
- **EXECUTE:** Limits on the masses of charginos and sleptons are set at 95% CL
- Upper limit on the cross section for same sign $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\pm}$ pair production via VBF is set with respect to the mass difference $m_{\tilde{\chi}^\pm_1} - m_{\tilde{\chi}^0_1}$ at 95% CL
- The LHC Run II data will allow to study the wider range of parameter space and provide the sensitivity to SUSY production via VBF

 QQ

イロト イ部 トイモト イモト