Recent Results from SuperCDMS

Jodi Cooley Southern Methodist University

December 2015 - In Pursuit of Dark Matter - Jodi Cooley

Outline

- Motivation and General Principles
- SuperCDMS at Soudan
	- Detection Principles
	- New Results from SuperCDMS CDMSlite Run 2
- Plans for the SuperCDMS at SNOLAB experiment

The Nature of Dark Matter

- **- The Missing Mass Problem:**
	- Dynamics of stars, galaxies, and clusters
	- Rotation curves, gravitational lensing
	- Large Scale Structure formation

- Wealth of evidence for a particle solution

- Microlensing (MACHOs) mostly ruled out
- MOND has problems with Bullet Cluster
- **- Non-baryonic**
	- Height of acoustic peaks in the CMB $(\Omega_{\rm b}, \Omega_{\rm m})$
	- Power spectrum of density fluctuations (Ω_m)
	- Primordial Nucleosynthesis (Ω_b)
- **- And STILL HERE!**
	- Stable, neutral, non-relativistic
	- Interacts via gravity and (maybe) a weak force

How to Detect Dark Matter

WIMP scattering

WIMP production on Earth

WIMP annihilation in the cosmos

WIMP - Nucleus Interaction ASSUME TANDING INTERNATION

M. B. Goldwan and E. Wither and E. With Phys. Rev. 2014. Philip 2014. Philip 2014. Philip 2014. Philip 2014. R
Rev. 2015 (1985). Rev. 2014. Philip 2015. Rev. 2014. Philip 2015. Philip 2015. Philip 2015. Philip 2015. Phili Assume that the dark matter is not only gravitationally interacting (WIMP).

Direct Detection Principles

Interaction Rate

 $\overline{)}$

The Gory Details:

$$
F(E_R) \simeq \exp(-E_R m_N R_o^2/3
$$

$$
m_r = \frac{m_\chi m_N}{m_\chi + m_N}
$$

$$
T(E_R) \simeq \exp(-v_{\text{min}}^2/v_o^2)
$$

$$
v_{\text{min}} = \sqrt{E_R m_N/(2m_r^2)}
$$

"form factor" (quantum mechanics of interaction with nucleus)

"reduced mass"

integral over local WIMP velocity distribution

minimum WIMP velocity for given ER

Direct Detection Rates

Standard Halo Model:

- Energy spectrum and rate depend on details of WIMP distribution in the dark matter halo.
- Assume isothermal and spherical, Maxwell-Boltzman distrubution
	- $-v_{\rm rms}$ = 270 km/s, v_o = 220 km/s, v_{esc} = 544 km/s
	- $-po = 0.3 \text{ GeV/cm}^3$

Flux:

- Assume the mass of the WIMP is $100 \text{ GeV}/c^2$
- $-$ ~10 million/hand/sec

Direct Detection Event Rates etion Event Rates threshold of experiment

- Elastic scattering of WIMP deposits small amounts of energy into a recoiling nucleus (~few 10s of keV)
- Featureless exponential spectrum with no obvious peak, knee, break ...
- Event rate is very, very low.

E_{thresh}[keV]

- Radioactive background of most materials is higher than the event rate.

Motivation for Low Mass WIMPS

- No signal has thus far been seen at higher mass by direct detection experiments or at the LHC.
- Particle Physics models provide candidates for light dark matter including (but not limited to):
	- Supersymmetry (neutralino in the MSSM or NMSSM, neutrino in extended models)
	- Asymmetric Dark Matter
	- others
- This parameter space is largely unexplored and must also be advanced!

Diroct Dotoction Funnt DITCCC DCCC Direct Detection Event Rates

Total rate for different thresholds: (assumed: $m_{\chi} = 10 \text{ GeV}/c^2$, $\sigma_{\chi-n} = 10^{-45} \text{ cm}^2$) $T(t)$ $T(t)$

R(Ethresh) [counts/10kg/year]

Enectali Figueroa-Feliciano / Fermilab Seminar / 2013

Challenges

- **Low energy thresholds** (>10 keV 10s keV)
- Rigid **background controls**
	- Clean materials
	- shielding
	- discrimination power
- Substantial **Depth**
	- neutrons look like WIMPS
- **Long exposures**
	- large masses, long term stablility

The SuperCDMS Collaboration

SuperCDMS in a Nutshell

Use a combination of **discrimination** and **shielding** to maintain a **"<1 event expected background"** experiment with **low temperature** semiconductor detectors

Discrimination from measurements of **ionization** and **phonon energy and charge distributions**

Keep backgrounds low as possible through shielding and material selection.

SuperCDMS iZIP Detectors

Use)ac0ve)and)passive)

Field lines near surface:

 \bullet . In the coolege \blacksquare eG%

9.0 kg Ge (15 in 15 in 15
19.0 kg Ge (15 in 15 in 15

- Ge crystal (600 g) **i**nterleaved **Z**-sensitive **I**onization and **P**honon detectors (**iZIP**)
- Ionization lines $(\pm 2 \text{ V})$ are interleaved with phonon sensors
- Two charge channels on each face can be used to reject surface and sidewall events
- *Use)division)of)energy)* ratio - Phonon sensors and their layout are optimized to enhance phonon signal to noise
- **between** Each side has one outer channel to reject zero **Partial** *sensors* charge events and 3 inner channels to reject surface and sidewall events.
- ¹¹¹⁹_{an} 9 kg Ge (15 iZIP detectors, each with mass mass 600 g) stacked into 5 towers

4 SQUID readout channels, each reads out 1036 TES in parallel

${\bf SCDMS}$ iZIPs: Charge Signal $\mathbb K$ 4&+43-49%3+%3+&%4!1&%'=>3.,4%%?%*-3@+1%3+%,(&%

$3,41$ m $\frac{1}{2}$

Equal but opposite ionization signal appears on both faces of $\frac{1}{2}$ $\mathsf{ICICLUU}$ **Surface Events:** $\begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix}$ detector (symmetric)

Ionization signal appears on one $\begin{array}{c} \bullet \end{array}$ detector face (asymmetric)

Sensor March 1980

 $\mathcal{L}(\mathcal{$

Backgrounds

19

Community Assays Database

Use Clean Materials

Supported by AARM, LBNL, MAJORANA, SMU, SJTU & others Supported by AARM, LBNL, MAJORANA, SMU, SJTU & others

Shielding: Peel the Onion

Active Muon Veto:

rejects events from cosmic rays

Polyethyene: moderate neutrons from fission decays and (α, n) interactions **Pb:** shielding from gammas resulting from radioactivity **Ancient Pb:** shields ²¹⁰Pb betas

Polyethyene: shields ancient Pb

Cu: radio-pure inner copper can

Ge: target

CDMSlite

A Low Ionization Experiment

- CDMSlite uses Neganov-Luke amplification to obtain low thresholds with high-resolution ov-Luke
1 low thresholds
- Ionization only, uses phonon instrumentation to measure ionization • Can'explore'low'mass'WIMPs'via'
- No event-by- event discrimination of | muclear recoils
| alternative export discri-
- Drifting electrons across a potential (V) generates a large number of phonons | (Luke phonons). $\frac{1}{2}$ $\frac{1}{2}$

CDMSlite - The Detector $G^* =$ $E_t(V = 09)$ $E_t(V=0)$ = $\frac{1+q_{IV_e}v}{2}$ $\frac{1}{\sqrt{2}}$ $= 24$ ***,For,electron,recoils!,**

- Custom electronics were installed to allow biases above 10 V \mathcal{L} to \mathcal{V}
	- Disable one side of iZIP and raising that entire side to the bias voltage. electronic \mathcal{L} $O₁$ $L₁$ and $L₁$
- A voltage scan indicated 70 V was | \Box the optimal operating voltage.
	- At low voltage, the signal increases linearly with no charge noise.
	- At high voltage onset of leakage current increases the phonon noise.

 10
 5

 $5¹$

Ф Ω

 $10¹$

CDMSlite - Run 1

CDMSlite: Run 1 Data

PRL 112, 041302, 2014

- ata were taken during th $\frac{1}{2}$ is a 240 periods in 2012 - Data were taken during three
	- 6.5 kg doing ω 0.9 kg-days exposule - 6.5 kg-days exposure
- $\overline{\text{e i7IP }}$ was used <u>IZII[°] Was</u> use $1522 - 0.6$ Kg - One iZIP was used, IT5Z2 – 0.6 kg
	- Salactad for **S** $\frac{1}{2}$ + $\frac{1$ threshold and low leakage H^{\bullet} CUITUTIIL
 $1/0$ o Victorianic mathemale ald - Selected for its low trigger current
	- Product in the set of the product warm-up to be the set of the set o - 160 eV ionization threshold

CDMSlite: Run 2 Data $\sum_{i=1}^{n}$

- Same iZIP was used, IT5Z2 0.6 kg was used. $IT5Z2 - 0.6$ kg Mitigate transient detector
- 70 kg-days of data taken between Feb Nov 2014.
	- Two data periods 59.32 kg-days and 10.78 kg-days $\overline{\text{avs}}$ $\frac{1}{2}$
- Improvements over Run 1
	- Mitigate transient detector leakage current
	- Better LF noise rejection electronics DO variation in bias potential - Improved electronics board reduced
	- Vibration sensors installed to monitor cryocooler low frequency noise.

bler low frequency noise. \Box energy calibration, low frequency - Analysis improvements lead to better noise rejection and improved fiducial volume.

Reached energy threshold for electron recoils of 56 eV!

CDMSlite: Analysis Details

Singles and Muon Veto:

Single detector scatter Remove events in coincidence with muon veto

Pulse shape:

Reject events with sharp rise- or fall-times, poor reconstruction, and events compatible with LF noise.

Fiducial Volume:

Reject events near detector surfaces.

$\mathcal{F}_{\mathcal{A}}$, and the signal ecolor online) Binned total signal ecolor online signal ecolor sequential application of selection criteria: single-scatter and **Efficiencies:**

muon-veto (orange dot-dashed), pulse-shape (blue dotted), hard using calibration da $\mathbf o$ and simulation Calculated using calibration data

which decays via electron capture with a half-life of α half-life of α half-life of α

$\overrightarrow{ }$ CDMSlite: Run 2 Results

arXiv: 1509.02448

CDMSlite: Run 2 Results

SuperCDMS @ SNOLAB F_{max} er a bandar a bandar
San an t-San an t-Sa **C CONSULTA**

From Soudan to SNOLAB

SuperCDMS SNOLAB Towers

Improved Surface Event Rejection:

- Lower operating temperature gives us improved phonon resolution
- Improved charge resolution with HEMT readout
- Improved phonon resolution + more phonon channels + improved charge resolution
	- ‣ improved fiducialization
	- ‣ better surface event rejection

Why SNOLAB? Depth is Important

We only need to worry about radiogenic neutrons!

Compton Background UII Dd $1.00110 d$

- Photon Rate at Soudan: $1100 \text{ eV}/keV_r$ kg yr

- Not an issue for the Soudan experiments because we had NR/ER discrimination at high energies.

- Dominant source of these photons is the cryostat.

- Target for SNOLAB cryostat: 5 ev/keV_r kg yr $(-220x <$ Soudan)

Compton Background: Cleaner Cryostat Solution and the solution of t

Radon Correnniaation in

- Airborne radon is everywhere. It can absorb onto detectors during fabrication and testing
- Quickly decays to 210Pb (22.5 year half-life)
- $-$ ²¹⁰Pb emits two βs and an α while decaying to ²⁰⁶Pb
- Detector (or detector housing) contamination by 222Rn can be determined by measuring alpha or beta particles given off during these decays.

Radon Contamination Principal Contaminador Cont

- Surface contamination from Cu housing dominated in the SuperCDMS Soudan experiment.
- For SNOLAB we will require the same surface event rate for copper housing as the detectors.

uba
Manazarta

210Pb*Surface*

Singles*Rate**

Solution and the solution of t Radon Background: Radon Mitigation

Problem*#4:*Radon*ContaminaDon* *β* $\frac{d}{dt}$ Radon exposure can be mitigated by

- surface cleaning procedures
- radon reduced environments for material/detector storage
- cleaning in the contract of th 206Pb *α* - monitoring and tracking of materials and components

Total Phonon Energy (eV_t)

Background Simulation

Cosmogenic Backgrounds various materials. All components of the assembly will then be carefully tracked to monitor and \overline{O}

Table 12: Isotopes of potential concern for background considerations sorted by the material cosmic rays are currently being assessed. Backgrounds resulting from activation of materials exposed to

- Transportation of Ge from US vendors will be done via ground.
- Need to complete a study of trade-offs between air transport vs ship for European vendors. $\begin{array}{ccc} \n\mathbf{S} & \mathbf{S} & \mathbf{$ - Need to complete a study of trade-offs between air transport vs to surfaces and detector Γ
- Appropriate packaging will be used for both crystal boules and crystal that have been cut, shaped and polished. repropriate paeraging will be abed for both er your bours and
- Underground storage when possible. higher than the detector faces. As such, more stringent cleaning and radon exposure protocols will analyze \mathcal{A} ²¹⁰Pb that decays on surfaces without a direct line of sight to the detectors (source 4) can still

Expected Sensitivities

Conclusions

- CDMSlite Run 2 has produced world leading limits in the search for low mass WIMPs. It excludes parameter space for WIMPs with masses between 1.6 and 5.5 GeV/ c^2 .
- The interpretation of the excess events seen by CoGeNT as a WIMP signal is disfavored. CDMS II (Si) disfavored assuming standard WIMP interactions and a standard halo model.
- The standard high threshold analysis of SuperCDMS is ongoing and aims for a background of less than 1 event.
- Plans for a 50 kg SuperCDMS SNOLAB experiment are well underway. If funded, the SuperCDMS SNOLAB experiment will have unprecedented sensitivity to low mass WIMPs.