Recent Results from SuperCDMS

Jodi Cooley Southern Methodist University

December 2015 - In Pursuit of Dark Matter - Jodi Cooley

Outline

- Motivation and General Principles
- SuperCDMS at Soudan
 - Detection Principles
 - New Results from SuperCDMS CDMSlite Run 2
- Plans for the SuperCDMS at SNOLAB experiment

The Nature of Dark Matter

- The Missing Mass Problem:
 - Dynamics of stars, galaxies, and clusters
 - Rotation curves, gravitational lensing
 - Large Scale Structure formation
- Wealth of evidence for a particle solution
 - Microlensing (MACHOs) mostly ruled out
 - MOND has problems with Bullet Cluster
- Non-baryonic
 - Height of acoustic peaks in the CMB (Ω_b, Ω_m)
 - Power spectrum of density fluctuations (Ω_m)
 - Primordial Nucleosynthesis (Ω_b)
- And STILL HERE!
 - Stable, neutral, non-relativistic
 - Interacts via gravity and (maybe) a weak force

How to Detect Dark Matter

WIMP scattering on Earth

WIMP production on Earth

← WIMP annihilation in the cosmos

WIMP - Nucleus Interaction

Assume that the dark matter is not only gravitationally interacting (WIMP).

Direct Detection Principles

Interaction Rate

The Gory Details:

$$F(E_R) \simeq \exp\left(-E_R m_N R_o^2/3\right)$$
$$m_r = \frac{m_\chi m_N}{m_\chi + m_N}$$
$$T(E_R) \simeq \exp(-v_{\min}^2/v_o^2)$$
$$v_{\min} = \sqrt{E_R m_N/(2m_r^2)}$$

"form factor" (quantum mechanics of interaction with nucleus)

"reduced mass"

integral over local WIMP velocity distribution

minimum WIMP velocity for given $E_{\ensuremath{R}}$

Direct Detection Rates

Standard Halo Model:

- Energy spectrum and rate depend on details of WIMP distribution in the dark matter halo.
- Assume isothermal and spherical, Maxwell-Boltzman distrubution
 - $-v_{rms} = 270 \text{ km/s}, v_o = 220 \text{ km/s}, v_{esc} = 544 \text{ km/s}$
 - $-\rho o = 0.3 \text{ GeV/cm}^3$

Flux:

- Assume the mass of the WIMP is 100 GeV/c^2
- ~ 10 million/hand/sec

Direct Detection Event Rates

- Elastic scattering of WIMP deposits small amounts of energy into a recoiling nucleus (~few 10s of keV)
- Featureless exponential spectrum with no obvious peak, knee, break ...
- Event rate is very, very low.

 $E_{thresh}[keV]$

- Radioactive background of most materials is higher than the event rate.

Motivation for Low Mass WIMPS

- No signal has thus far been seen at higher mass by direct detection experiments or at the LHC.
- Particle Physics models provide candidates for light dark matter including (but not limited to):
 - Supersymmetry (neutralino in the MSSM or NMSSM, neutrino in extended models)
 - Asymmetric Dark Matter
 - others
- This parameter space is largely unexplored and must also be advanced!

Direct Detection Event Rates

Total rate for different thresholds: (assumed: $m_{\chi} = 10 \text{ GeV}/c^2$, $\sigma_{\chi-n} = 10^{-45} \text{ cm}^2$)

R(Ethresh) [counts/10kg/year]

Challenges

- Low energy thresholds (>10 keV 10s keV)
- Rigid background controls
 - Clean materials
 - shielding
 - discrimination power
- Substantial Depth
 - neutrons look like WIMPS
- Long exposures
 - large masses, long term stablility

The SuperCDMS Collaboration

SuperCDMS in a Nutshell

Use a combination of discrimination and shielding to maintain a "<I event expected background" experiment with low temperature semiconductor detectors

Discrimination from measurements of ionization and phonon energy and charge distributions

Keep backgrounds low as possible through shielding and material selection.

SuperCDMS iZIP Detectors

- Ge crystal (600 g) interleaved Z-sensitive Ionization and Phonon detectors (iZIP)
- Ionization lines (±2 V) are interleaved with phonon sensors
- Two charge channels on each face can be used to reject surface and sidewall events
- Phonon sensors and their layout are optimized to enhance phonon signal to noise ratio
- Each side has one outer channel to reject zero charge events and 3 inner channels to reject surface and sidewall events.
- 9 kg Ge (15 iZIP detectors, each with mass mass 600 g) stacked into 5 towers

4 SQUID readout channels, each reads out 1036 TES in parallel

SCDMS iZIPs: C

Bulk Events:

Equal but opposite ionization signal appears on both faces of detector (symmetric) **Surface Events:**

Ionization signal appears on one detector face (asymmetric)

Backgrounds

Community Assays Database

Use Clean Materials

	radic	Depurity Naterial Assay	.org Database			
	Search	Submit Settings	About			
	copper			Q		
▶ EXO (2008)	Copper, OFRP, Norddeutsche Affine	rie Th	< 2.4 ppt	U	< 2.9 ppt	 ×
▶ EXO (2008)	Copper tubing, Metallica SA	Th	< 2 ppt	U	< 1.5 ppt	ж
▶ ILIAS ROSEBUD	Copper, OFHC					×
▹ XENON100 (2011)	Copper, Norddeutsche Affinerie	Th-228	21() muBq/kg	U-238	70() muBq/kg	 ×
▹ XENON100 (2011)	Copper, Norddeutsche Affiinerie	Th-228	< 0.33 mBq/kg	U-238	< 11 mBq/kg	 ×
► EXO (2008)	Copper gasket, Serto	Th	6.9() ppt	U	12.6() ppt	 ×
▶ EXO (2008)	Copper wire, McMaster-Carr	Th	< 77 ppt	U	< 270 ppt	 ж

http://radiopurity.org

Supported by AARM, LBNL, MAJORANA, SMU, SJTU & others

Shielding: Peel the Onion

Active Muon Veto:

rejects events from cosmic rays

Polyethyene: moderate neutrons from fission decays and (*α*,n) interactions **Pb:** shielding from gammas resulting from radioactivity **Ancient Pb:** shields ²¹⁰Pb betas

Polyethyene: shields ancient Pb

Cu: radio-pure inner copper can

Ge: target

CDMSlite

A Low Ionization Experiment

- CDMSlite uses Neganov-Luke amplification to obtain low thresholds with high-resolution
 - Ionization only, uses phonon instrumentation to measure ionization
 - No event-by- event discrimination of nuclear recoils
- Drifting electrons across a potential (V) generates a large number of phonons (Luke phonons).

$G^* = \frac{E_t(V = 09)}{E_t(V = 0)} = \frac{1 + qN_eV}{1} = 24$ CDMSlite - The Detector

- Custom electronics were installed to allow biases above 10 V
 - Disable one side of iZIP and raising that entire side to the bias voltage.
- A voltage scan indicated 70 V was the optimal operating voltage.
 - At low voltage, the signal increases linearly with no charge noise.
 - At high voltage onset of leakage current increases the phonon noise.

10

5

0

0

CDMSlite - Run 1

CDMSlite: Run 1 Data

PRL 112, 041302, 2014

- Data were taken during three periods in 2012
 - 6.5 kg-days exposure
- One iZIP was used, IT5Z2 – 0.6 kg
 - Selected for its low trigger threshold and low leakage current
 - 160 eV ionization threshold

CDMSlite: Run 2 Data

- Same iZIP was used, IT5Z2 0.6 kg
- 70 kg-days of data taken between Feb Nov 2014.
 - Two data periods 59.32 kg-days and 10.78 kg-days
- Improvements over Run 1
 - Mitigate transient detector leakage current
 - Improved electronics board reduced variation in bias potential
 - Vibration sensors installed to monitor cryocooler low frequency noise.

 Analysis improvements lead to better energy calibration, low frequency noise rejection and improved fiducial volume.

Reached energy threshold for electron recoils of 56 eV!

CDMSlite: Analysis Details

Singles and Muon Veto:

Single detector scatter Remove events in coincidence with muon veto

Pulse shape:

Reject events with sharp rise- or fall-times, poor reconstruction, and events compatible with LF noise.

Fiducial Volume:

Reject events near detector surfaces.

Efficiencies:

Calculated using calibration data and simulation

CDMSlite: Run 2 Results

arXiv: 1509.02448

CDMSlite: Run 2 Results

SuperCDMS @ SNOLAB

From Soudan to SNOLAB

SuperCDMS SNOLAB Towers

Improved Surface Event Rejection:

- Lower operating temperature gives us improved phonon resolution
- Improved charge resolution with HEMT readout
- Improved phonon resolution + more phonon channels + improved charge resolution
 - improved fiducialization
 - better surface event rejection

Why SNOLAB? Depth is Important

We only need to worry about radiogenic neutrons!

Compton Background

- Photon Rate at Soudan: 1100 ev/keV_r kg yr
- Not an issue for the Soudan experiments because we had NR/ER discrimination at high energies.
- Dominant source of these photons is the cryostat.
- Target for SNOLAB cryostat: 5 ev/keV_r kg yr $(\sim 220x < Soudan)$

Compton Background: Cleaner Cryostat

Material	$^{238}\mathrm{U}$	²³² Th	⁴⁰ K	Reference
Polyethylene	$0.03 \mathrm{~mBq/kg}$	0.02 mBq/kg	0.1 mBq/kg	DEAP [121]
Copper	$0.07~\mathrm{mBq/kg}$	0.02 mBq/kg	0.04 mBq/kg	XENON100 [122]
Lead	$0.66 \mathrm{~mBq/kg}$	0.5 mBq/kg	$7.0 \mathrm{~mBq/kg}$	XENON100 [122]

Radon Coppendiationain

- Airborne radon is everywhere.
 It can absorb onto detectors during fabrication and testing
- Quickly decays to 210Pb (22.5 year half-life)
- ²¹⁰Pb emits two β s and an α while decaying to ²⁰⁶Pb
- Detector (or detector housing) contamination by ²²²Rn can be determined by measuring alpha or beta particles given off during these decays.

Radon Contamination

- Surface contamination from Cu housing dominated in the SuperCDMS Soudan experiment.
- For SNOLAB we will require the same surface event rate for copper housing as the detectors.

Soudan	α Rate	²⁰⁶ Pb Singles Pate
Contamination	ивчутт	(evt/kgyr)
Ge/Si	260	7
Cu Housing	5600	900

Radon Background: Radon Mitigation

Radon exposure can be mitigated by

- surface cleaning procedures
- radon reduced environments for material/detector storage
- monitoring and tracking of materials and components

Cosmogenic Backgrounds

Backgrounds resulting from activation of materials exposed to cosmic rays are currently being assessed.

Material	Cosmogenic Isotope
Cu	22 Na, 49 V, 54 Mn, 55 Fe, 57,58,60 Co, 63 Ni, 65 Zn
Ge	³ H, ⁷ Be, ²² Na, ⁴⁹ V, ⁵¹ Cr, ⁵⁴ Mn, ⁵⁵ Fe, ^{57,58,60} Co, ⁵⁶ Ni, ⁶⁸ Ga, ⁶⁸ Ge, ^{73,74} As
Si	3 H, 7 Be, 22 Na, 32 Si

- Transportation of Ge from US vendors will be done via ground.
- Need to complete a study of trade-offs between air transport vs ship for European vendors.
- Appropriate packaging will be used for both crystal boules and crystal that have been cut, shaped and polished.
- Underground storage when possible.

Expected Sensitivities

Conclusions

- CDMSlite Run 2 has produced world leading limits in the search for low mass WIMPs. It excludes parameter space for WIMPs with masses between 1.6 and 5.5 GeV/ c^2 .
- The interpretation of the excess events seen by CoGeNT as a WIMP signal is disfavored. CDMS II (Si) disfavored assuming standard WIMP interactions and a standard halo model.
- The standard high threshold analysis of SuperCDMS is ongoing and aims for a background of less than 1 event.
- Plans for a 50 kg SuperCDMS SNOLAB experiment are well underway. If funded, the SuperCDMS SNOLAB experiment will have unprecedented sensitivity to low mass WIMPs.